Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Drug Metabolism and Personalized Therapy

Official journal of the European Society of Pharmacogenomics and Personalised Therapy

Editor-in-Chief: Llerena, Adrián

Editorial Board: Benjeddou, Mongi / Chen, Bing / Dahl, Marja-Liisa / Devinsky, Ferdinand / Hirata, Rosario / Hubacek, Jaroslav A. / Ingelman-Sundberg, Magnus / Maitland-van der Zee, Anke-Hilse / Manolopoulos, Vangelis G. / Marc, Janja / Melichar, Bohuslav / Meyer, Urs A. / Nair, Sujit / Nofziger, Charity / Peiro, Ana / Sadee, Wolfgang / Salazar, Luis A. / Simmaco, Maurizio / Turpeinen, Miia / Schaik, Ron / Shin, Jae-Gook / Visvikis-Siest, Sophie / Zanger, Ulrich M.

4 Issues per year


CiteScore 2017: 1.46

SCImago Journal Rank (SJR) 2017: 0.531
Source Normalized Impact per Paper (SNIP) 2017: 0.645

Online
ISSN
2363-8915
See all formats and pricing
More options …
Volume 29, Issue 3

Issues

The pharmacogenetics of carboxylesterases: CES1 and CES2 genetic variants and their clinical effect

Zahra Merali / Stephanie Ross
  • Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada
  • Population Genomics Program, Chanchlani Research Centre, McMaster University, Hamilton, Ontario, Canada
  • Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Guillaume Paré
  • Corresponding author
  • Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada
  • Population Genomics Program, Chanchlani Research Centre, McMaster University, Hamilton, Ontario, Canada
  • Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
  • Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
  • Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-07-02 | DOI: https://doi.org/10.1515/dmdi-2014-0009

Abstract

Human carboxylesterase 1 (CES1) and carboxylesterase 2 (CES2) are serine esterases responsible for the hydrolysis of ester and amide bonds present in a number of pharmaceutical products. Several common genetic variants of the CES1 and CES2 genes have been shown to influence drug metabolism and clinical outcomes. Polymorphisms of the CES1 gene have been reported to affect the metabolism of dabigatran etexilate, methylphenidate, oseltamivir, imidapril, and clopidogrel, whereas variants of the CES2 gene have been found to affect aspirin and irinotecan. Although the findings of these studies may be preliminary, they demonstrate the potential clinical utility of CES polymorphisms; however, more research is required, especially with respect to CES2. In this review, we outline the functional, molecular, and genetic properties of CES1 and CES2, and highlight recent studies that have shown relations between CES1 and CES2 variants and contemporary pharmacotherapy.

Keywords: aspirin; carboxylesterase; carboxylesterase 1; carboxylesterase 2; clopidogrel; dabigatran etexilate; gene function; imidapril; irinotecan; methylphenidate; oseltamivir; pharmacogenetics

References

  • 1.

    Zhu HJ, Patrick KS, Yuan HJ, Wang JS, Donovan JL, DeVane CL, et al. Two CES1 gene mutations lead to dysfunctional carboxylesterase 1 activity in man: clinical significance and molecular basis. Am J Hum Genet 2008;82:1241–8.CrossrefGoogle Scholar

  • 2.

    Thomsen R, Rasmussen HB, Linnet K. In vitro drug metabolism by human carboxylesterase 1: focus on angiotensin-converting enzyme inhibitors. Drug Metab Dispos 2014;42:126–33.PubMedGoogle Scholar

  • 3.

    Ishizuka T, Yoshigae Y, Murayama N, Izumi T. Different hydrolases involved in bioactivation of prodrug-type angiotensin receptor blockers: carboxymethylenebutenolidase and carboxylesterase 1. Drug Metab Dispos 2013;41:1888–95.PubMedGoogle Scholar

  • 4.

    Imai T, Takase Y, Iwase H, Hashimoto M. Involvement of carboxylesterase in hydrolysis of propranolol prodrug during permeation across rat skin. Pharmaceutics 2013;5:371–84.PubMedCrossrefGoogle Scholar

  • 5.

    Kim MJ, Jeong ES, Park JS, Lee SJ, Ghim JL, Choi CS, et al. Multiple cytochrome P450 isoforms are involved in the generation of a pharmacologically active thiol metabolite, whereas paraoxonase 1 and carboxylesterase 1 catalyze the formation of a thiol metabolite isomer from ticlopidine. Drug Metab Dispos 2014;42:141–52.PubMedGoogle Scholar

  • 6.

    Bencharit S, Morton CL, Xue Y, Potter PM, Redinbo MR. Structural basis of heroin and cocaine metabolism by a promiscuous human drug-processing enzyme. Nat Struct Biol 2003;10:349–56.PubMedCrossrefGoogle Scholar

  • 7.

    Xiao D, Shi D, Yang D, Barthel B, Koch TH, Yan B. Carboxylesterase-2 is a highly sensitive target of the antiobesity agent orlistat with profound implications in the activation of anticancer prodrugs. Biochem Pharmacol 2013;85:439–47.PubMedGoogle Scholar

  • 8.

    Pratt SE, Durland-Busbice S, Shepard RL, Heinz-Taheny K, Iversen PW, Dantzig AH. Human carboxylesterase-2 hydrolyzes the prodrug of gemcitabine (LY2334737) and confers prodrug sensitivity to cancer cells. Clin Cancer Res 2013;19:1159–68.Google Scholar

  • 9.

    Barthel BL, Zhang Z, Rudnicki DL, Coldren CD, Polinkovsky M, Sun H, et al. Preclinical efficacy of a carboxylesterase 2-activated prodrug of doxazolidine. J Med Chem 2009;52:7678–88.PubMedGoogle Scholar

  • 10.

    Hosokawa M, Maki T, Satoh T. Characterization of molecular species of liver microsomal carboxylesterases of several animal species and humans. Arch Biochem Biophys 1990;277:219–27.Google Scholar

  • 11.

    Fleming CD, Bencharit S, Edwards CC, Hyatt JL, Tsurkan L, Bai F, et al. Structural insights into drug processing by human carboxylesterase 1: tamoxifen, mevastatin, and inhibition by benzil. J Mol Biol 2005;352:165–77.Google Scholar

  • 12.

    Ross MK, Borazjani A, Wang R, Crow JA, Xie S. Examination of the carboxylesterase phenotype in human liver. Arch Biochem Biophys 2012;522:44–56.Google Scholar

  • 13.

    Satoh T, Hosokawa M. Structure, function and regulation of carboxylesterases. Chem Biol Interact 2006;162:195–211.Google Scholar

  • 14.

    Taketani M, Shii M, Ohura K, Ninomiya S, Imai T. Carboxylesterase in the liver and small intestine of experimental animals and human. Life Sci 2007;81:924–32.CrossrefPubMedGoogle Scholar

  • 15.

    Bencharit S, Morton CL, Howard-Williams EL, Danks MK, Potter PM, Redinbo MR. Structural insights into CPT-11 activation by mammalian carboxylesterases. Nat Struct Biol 2002;9:337–42.PubMedGoogle Scholar

  • 16.

    Tsurkan LG, Hatfield MJ, Edwards CC, Hyatt JL, Potter PM. Inhibition of human carboxylesterases hCE1 and hiCE by cholinesterase inhibitors. Chem Biol Interact 2013;203:226–30.Google Scholar

  • 17.

    Zhao B, Bie J, Wang J, Marqueen SA, Ghosh S. Identification of a novel intracellular cholesteryl ester hydrolase (carboxylesterase 3) in human macrophages: compensatory increase in its expression after carboxylesterase 1 silencing. Am J Physiol Cell Physiol 2012;303:C427–35.Google Scholar

  • 18.

    Holmes RS, Cox LA, Vandeberg JL. Mammalian carboxylesterase 5: comparative biochemistry and genomics. Comp Biochem Physiol D Genomics Proteomics 2008;3:195–204.CrossrefGoogle Scholar

  • 19.

    von HG. Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem 1983;133:17–21.Google Scholar

  • 20.

    Zschunke F, Salmassi A, Kreipe H, Buck F, Parwaresch MR, Radzun HJ. cDNA cloning and characterization of human monocyte/macrophage serine esterase-1. Blood 1991;78:506–12.PubMedGoogle Scholar

  • 21.

    Bencharit S, Morton CL, Hyatt JL, Kuhn P, Danks MK, Potter PM, et al. Crystal structure of human carboxylesterase 1 complexed with the Alzheimer’s drug tacrine: from binding promiscuity to selective inhibition. Chem Biol 2003;10:341–9.CrossrefGoogle Scholar

  • 22.

    Friedrichsen M, Poulsen P, Wojtaszewski J, Hansen PR, Vaag A, Rasmussen HB. Carboxylesterase 1 gene duplication and mRNA expression in adipose tissue are linked to obesity and metabolic function. PLoS One 2013;8:e56861.Google Scholar

  • 23.

    Langmann T, Becker A, Aslanidis C, Notka F, Ullrich H, Schwer H, et al. Structural organization and characterization of the promoter region of a human carboxylesterase gene. Biochim Biophys Acta 1997;1350:65–74.Google Scholar

  • 24.

    Ghosh S, Natarajan R. Cloning of the human cholesteryl ester hydrolase promoter: identification of functional peroxisomal proliferator-activated receptor responsive elements. Biochem Biophys Res Commun 2001;284:1065–70.Google Scholar

  • 25.

    Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet 2013;45:1274–83.CrossrefPubMedGoogle Scholar

  • 26.

    Zhu HJ, Brinda B, Froehlich TE, Markowitz JS. A discriminative analytical method for detection of CES1A1 and CES1A2/CES1A3 genetic variants. Pharmacogenet Genomics 2012;22:215–8.CrossrefGoogle Scholar

  • 27.

    Fukami T, Nakajima M, Maruichi T, Takahashi S, Takamiya M, Aoki Y, et al. Structure and characterization of human carboxylesterase 1A1, 1A2, and 1A3 genes. Pharmacogenet Genomics 2008;18:911–20.PubMedCrossrefGoogle Scholar

  • 28.

    Hosokawa M, Furihata T, Yaginuma Y, Yamamoto N, Watanabe N, Tsukada E, et al. Structural organization and characterization of the regulatory element of the human carboxylesterase (CES1A1 and CES1A2) genes. Drug Metab Pharmacokinet 2008;23:73–84.PubMedCrossrefGoogle Scholar

  • 29.

    Morgan EW, Yan B, Greenway D, Parkinson A. Regulation of two rat liver microsomal carboxylesterase isozymes: species differences, tissue distribution, and the effects of age, sex, and xenobiotic treatment of rats. Arch Biochem Biophys 1994;315:513–26.Google Scholar

  • 30.

    Anand SS, Kim KB, Padilla S, Muralidhara S, Kim HJ, Fisher JW, et al. Ontogeny of hepatic and plasma metabolism of deltamethrin in vitro: role in age-dependent acute neurotoxicity. Drug Metab Dispos 2006;34:389–97.PubMedGoogle Scholar

  • 31.

    Yang D, Pearce RE, Wang X, Gaedigk R, Wan YJ, Yan B. Human carboxylesterases HCE1 and HCE2: ontogenic expression, inter-individual variability and differential hydrolysis of oseltamivir, aspirin, deltamethrin and permethrin. Biochem Pharmacol 2009;77:238–47.CrossrefGoogle Scholar

  • 32.

    Paré G, Eriksson N, Lehr T, Connolly S, Eikelboom J, Ezekowitz MD, et al. Genetic determinants of dabigatran plasma levels and their relation to bleeding. Circulation 2013;127:1404–12.CrossrefPubMedGoogle Scholar

  • 33.

    Nemoda Z, Angyal N, Tarnok Z, Gadoros J, Sasvari-Szekely M. Carboxylesterase 1 gene polymorphism and methylphenidate response in ADHD. Neuropharmacology 2009;57:731–3.PubMedGoogle Scholar

  • 34.

    Zhu HJ, Appel DI, Jiang Y, Markowitz JS. Age- and sex-related expression and activity of carboxylesterase 1 and 2 in mouse and human liver. Drug Metab Dispos 2009;37:1819–25.Google Scholar

  • 35.

    Tarkiainen EK, Backman JT, Neuvonen M, Neuvonen PJ, Schwab M, Niemi M. Carboxylesterase 1 polymorphism impairs oseltamivir bioactivation in humans. Clin Pharmacol Ther 2012;92:68–71.PubMedGoogle Scholar

  • 36.

    Geshi E, Kimura T, Yoshimura M, Suzuki H, Koba S, Sakai T, et al. A single nucleotide polymorphism in the carboxylesterase gene is associated with the responsiveness to imidapril medication and the promoter activity. Hypertens Res 2005;28:719–25.PubMedCrossrefGoogle Scholar

  • 37.

    Lewis JP, Horenstein RB, Ryan K, O’Connell JR, Gibson Q, Mitchell BD, et al. The functional G143E variant of carboxylesterase 1 is associated with increased clopidogrel active metabolite levels and greater clopidogrel response. Pharmacogenet Genomics 2013;23:1–8.Google Scholar

  • 38.

    Tang M, Mukundan M, Yang J, Charpentier N, LeCluyse EL, Black C, et al. Antiplatelet agents aspirin and clopidogrel are hydrolyzed by distinct carboxylesterases, and clopidogrel is transesterificated in the presence of ethyl alcohol. J Pharmacol Exp Ther 2006;319:1467–76.Google Scholar

  • 39.

    Kubo T, Kim SR, Sai K, Saito Y, Nakajima T, Matsumoto K, et al. Functional characterization of three naturally occurring single nucleotide polymorphisms in the CES2 gene encoding carboxylesterase 2 (HCE-2). Drug Metab Dispos 2005;33:1482–7.Google Scholar

  • 40.

    Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O’Donnell CJ, de Bakker PI. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 2008;24:2938–9.CrossrefPubMedGoogle Scholar

  • 41.

    Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med 2009;361:1139–51.Google Scholar

  • 42.

    Stangier J. Clinical pharmacokinetics and pharmacodynamics of the oral direct thrombin inhibitor dabigatran etexilate. Clin Pharmacokinet 2008;47:285–95.PubMedCrossrefGoogle Scholar

  • 43.

    Blech S, Ebner T, Ludwig-Schwellinger E, Stangier J, Roth W. The metabolism and disposition of the oral direct thrombin inhibitor, dabigatran, in humans. Drug Metab Dispos 2008;36:386–99.PubMedCrossrefGoogle Scholar

  • 44.

    Eikelboom JW, Wallentin L, Connolly SJ, Ezekowitz M, Healey JS, Oldgren J, et al. Risk of bleeding with 2 doses of dabigatran compared with warfarin in older and younger patients with atrial fibrillation: an analysis of the randomized evaluation of long-term anticoagulant therapy (RE-LY) trial. Circulation 2011;123:2363–72.Google Scholar

  • 45.

    American Academy of Pediatrics, Subcommittee on Attention-Deficit/Hyperactivity Disorder Committee on Quality Improvement. Clinical practice guideline: treatment of the school-aged child with attention-deficit/hyperactivity disorder. Pediatrics 2001;108:1033–44.PubMedGoogle Scholar

  • 46.

    Spencer TJ, Greenbaum M, Ginsberg LD, Murphy WR. Safety and effectiveness of coadministration of guanfacine extended release and psychostimulants in children and adolescents with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 2009;19:501–10.CrossrefPubMedGoogle Scholar

  • 47.

    Sun Z, Murry DJ, Sanghani SP, Davis WI, Kedishvili NY, Zou Q, et al. Methylphenidate is stereoselectively hydrolyzed by human carboxylesterase CES1A1. J Pharmacol Exp Ther 2004;310:469–76.Google Scholar

  • 48.

    Jefferson T, Jones M, Doshi P, Del MC. Neuraminidase inhibitors for preventing and treating influenza in healthy adults: systematic review and meta-analysis. BMJ 2009;339:b5106.Google Scholar

  • 49.

    Sweeny DJ, Lynch G, Bidgood AM, Lew W, Wang KY, Cundy KC. Metabolism of the influenza neuraminidase inhibitor prodrug oseltamivir in the rat. Drug Metab Dispos 2000;28:737–41.PubMedGoogle Scholar

  • 50.

    Widmer N, Meylan P, Ivanyuk A, Aouri M, Decosterd LA, Buclin T. Oseltamivir in seasonal, avian H5N1 and pandemic 2009 A/H1N1 influenza: pharmacokinetic and pharmacodynamic characteristics. Clin Pharmacokinet 2010;49:741–65.CrossrefGoogle Scholar

  • 51.

    Massarella JW, He GZ, Dorr A, Nieforth K, Ward P, Brown A. The pharmacokinetics and tolerability of the oral neuraminidase inhibitor oseltamivir (Ro 64-0796/GS4104) in healthy adult and elderly volunteers. J Clin Pharmacol 2000;40:836–43.Google Scholar

  • 52.

    Yamanaka K, Takehara N, Murata K, Banno K, Sato T. Pharmacokinetic and pharmacodynamic study of imidaprilat, an active metabolite of imidapril, a new angiotensin-converting enzyme inhibitor, in spontaneously hypertensive rats. J Pharm Biomed Anal 1997;15:1851–9.CrossrefPubMedGoogle Scholar

  • 53.

    Yusuf S, Zhao F, Mehta SR, Chrolavicius S, Tognoni G, Fox KK. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N Engl J Med 2001;345:494–502.Google Scholar

  • 54.

    Sangkuhl K, Klein TE, Altman RB. Clopidogrel pathway. Pharmacogenet Genomics 2010;20:463–5.Google Scholar

  • 55.

    Shuldiner AR, O’Connell JR, Bliden KP, Gandhi A, Ryan K, Horenstein RB, et al. Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. J Am Med Assoc 2009;302:849–57.Google Scholar

  • 56.

    Baigent C, Blackwell L, Collins R, Emberson J, Godwin J, Peto R, et al. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet 2009;373:1849–60.Google Scholar

  • 57.

    Hankey GJ, Eikelboom JW. Aspirin resistance. Lancet 2006;367:606–17.Google Scholar

  • 58.

    Marsh S, Hoskins JM. Irinotecan pharmacogenomics. Pharmacogenomics 2010;11:1003–10.CrossrefPubMedGoogle Scholar

About the article

Corresponding author: Guillaume Paré, Population Health Research Institute, McMaster University, Hamilton General Hospital Campus, DB-CVSRI, 237 Barton Street East, Room C3103, Hamilton, Ontario, Canada L8L 2X2, Phone: +1 905 527 4322 ext. 40377, Fax: +1 905 296 5806, E-mail:


Received: 2014-02-18

Accepted: 2014-05-16

Published Online: 2014-07-02

Published in Print: 2014-09-01


Citation Information: Drug Metabolism and Drug Interactions, Volume 29, Issue 3, Pages 143–151, ISSN (Online) 2191-0162, ISSN (Print) 0792-5077, DOI: https://doi.org/10.1515/dmdi-2014-0009.

Export Citation

© 2014 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Sang Jun Park, Yun Ji Kim, Ji Su Kang, In Young Kim, Kyeong Sook Choi, and Hwan Myung Kim
Analytical Chemistry, 2018
[2]
Adna Ašić, Damir Marjanović, Jure Mirat, and Dragan Primorac
Personalized Medicine, 2018
[3]
Andrew S. Tseng, Reema D. Patel, Heidi E. Quist, Adrijana Kekic, Jacob T. Maddux, Christopher B. Grilli, and Fadi E. Shamoun
Cardiovascular Drugs and Therapy, 2018
[4]
Feng Chen, Bo Zhang, Robert B. Parker, and S. Casey Laizure
Expert Opinion on Drug Metabolism & Toxicology, 2018, Page 1
[5]
Mark E. Orcholski, Artyom Khurshudyan, Elya A. Shamskhou, Ke Yuan, Ian Y. Chen, Sean D. Kodani, Christophe Morisseau, Bruce D. Hammock, Ellen M. Hong, Ludmila Alexandrova, Tero-Pekka Alastalo, Gerald Berry, Roham T. Zamanian, and Vinicio A. de Jesus Perez
American Journal of Physiology-Lung Cellular and Molecular Physiology, 2017, Volume 313, Number 2, Page L252
[6]
Kim Boesen, Pia Brandt Danborg, Peter C Gøtzsche, and Karsten Juhl Jørgensen
Cochrane Database of Systematic Reviews, 2017
[7]
Fei-Yan Xiao, Jian-Quan Luo, Min Liu, Bi-Lian Chen, Shan Cao, Zhao-Qian Liu, Hong-Hao Zhou, Gan Zhou, and Wei Zhang
Scientific Reports, 2017, Volume 7, Number 1
[8]
Karl Emil Nelveg-Kristensen, Peter Bie, Laura Ferrero, Ditte Bjerre, Niels E. Bruun, Martin Egfjord, Henrik B. Rasmussen, Peter R. Hansen, and Katriina Aalto-Setala
PLOS ONE, 2016, Volume 11, Number 9, Page e0163341
[9]
Ricardo Jorge Dinis-Oliveira
European Journal of Drug Metabolism and Pharmacokinetics, 2017, Volume 42, Number 1, Page 11
[10]
Maria D. Chermá, Martin Josefsson, Irene Rydberg, Per Woxler, Tomas Trygg, Olle Hollertz, and Per A. Gustafsson
European Journal of Drug Metabolism and Pharmacokinetics, 2017, Volume 42, Number 2, Page 295
[11]
Yuanyuan Li, Munaf Zalzala, Kavita Jadhav, Yang Xu, Takhar Kasumov, Liya Yin, and Yanqiao Zhang
Hepatology, 2016, Volume 63, Number 6, Page 1860
[12]
Jiesi Xu, Yang Xu, Yuanyuan Li, Kavita Jadhav, Min You, Liya Yin, and Yanqiao Zhang
Scientific Reports, 2016, Volume 6, Number 1
[13]
William Brian, Larry M Tremaine, Million Arefayene, Ruben de Kanter, Raymond Evers, Yingying Guo, James Kalabus, Wen Lin, Cho-Ming Loi, and Guangqing Xiao
Pharmacogenomics, 2016, Volume 17, Number 6, Page 615
[14]
Yi Han, Surya Ayalasomayajula, Wei Pan, Fan Yang, Yaozong Yuan, Thomas Langenickel, Markus Hinder, Sampath Kalluri, Parasar Pal, and Gangadhar Sunkara
European Journal of Drug Metabolism and Pharmacokinetics, 2017, Volume 42, Number 1, Page 109
[15]
Yanjiao Xu, Chengliang Zhang, Wenxi He, and Dong Liu
European Journal of Drug Metabolism and Pharmacokinetics, 2016, Volume 41, Number 4, Page 321
[16]
Dan-Dan Wang, Qiang Jin, Li-Wei Zou, Jie Hou, Xia Lv, Wei Lei, Hai-Ling Cheng, Guang-Bo Ge, and Ling Yang
Chem. Commun., 2016, Volume 52, Number 15, Page 3183
[17]
Dan-Dan Wang, Qiang Jin, Jie Hou, Lei Feng, Na Li, Shi-Yang Li, Qi Zhou, Li-Wei Zou, Guang-Bo Ge, Jin-Guang Wang, and Ling Yang
Journal of Chromatography B, 2016, Volume 1008, Page 212
[18]
Márcia Alves, Joana Lamego, Tiago Bandeiras, Rute Castro, Hélio Tomás, Ana Sofia Coroadinha, Júlia Costa, and Ana Luisa Simplício
Biochemistry and Biophysics Reports, 2016, Volume 5, Page 105
[19]
Alex M. Cressman, Erin M. Macdonald, Kimberly A. Fernandes, Tara Gomes, J. Michael Paterson, Muhammad M. Mamdani, and David N. Juurlink
British Journal of Clinical Pharmacology, 2015, Volume 80, Number 4, Page 662
[20]
William F. Annes, Amanda Long, Jennifer W. Witcher, Mosun A. Ayan-Oshodi, Mary Pat Knadler, Wei Zhang, Malcolm I. Mitchell, Karen Cornelissen, and Stephen D. Hall
Journal of Pharmaceutical Sciences, 2015, Volume 104, Number 1, Page 207

Comments (0)

Please log in or register to comment.
Log in