Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Drug Metabolism and Personalized Therapy

Official journal of the European Society of Pharmacogenomics and Personalised Therapy

Editor-in-Chief: Llerena, Adrián

Editorial Board: Benjeddou, Mongi / Chen, Bing / Dahl, Marja-Liisa / Devinsky, Ferdinand / Hirata, Rosario / Hubacek, Jaroslav A. / Ingelman-Sundberg, Magnus / Maitland-van der Zee, Anke-Hilse / Manolopoulos, Vangelis G. / Marc, Janja / Melichar, Bohuslav / Meyer, Urs A. / Nair, Sujit / Nofziger, Charity / Peiro, Ana / Sadee, Wolfgang / Salazar, Luis A. / Simmaco, Maurizio / Turpeinen, Miia / Schaik, Ron / Shin, Jae-Gook / Visvikis-Siest, Sophie / Zanger, Ulrich M.

4 Issues per year


CiteScore 2017: 1.46

SCImago Journal Rank (SJR) 2017: 0.531
Source Normalized Impact per Paper (SNIP) 2017: 0.645

Online
ISSN
2363-8915
See all formats and pricing
More options …
Volume 29, Issue 4

Issues

Pharmacogenetics in Jewish populations

Yao Yang
  • Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Inga Peter
  • Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stuart A. Scott
  • Corresponding author
  • Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-05-27 | DOI: https://doi.org/10.1515/dmdi-2013-0069

Abstract

Spanning over 2000 years, the Jewish population has a long history of migration, population bottlenecks, expansions, and geographical isolation, which has resulted in a unique genetic architecture among the Jewish people. As such, many Mendelian disease genes and founder mutations for autosomal recessive diseases have been discovered in several Jewish groups, which have prompted recent genomic studies in the Jewish population on common disease susceptibility and other complex traits. Although few studies on the genetic determinants of drug response variability have been reported in the Jewish population, a number of unique pharmacogenetic variants have been discovered that are more common in Jewish populations than in other major racial groups. Notable examples identified in the Ashkenazi Jewish (AJ) population include the vitamin K epoxide reductase complex subunit 1 (VKORC1) c.106G>T (p.D36Y) variant associated with high warfarin dosing requirements and the recently reported cytochrome P450 2C19 (CYP2C19) allele, CYP2C19*4B, that harbors both loss-of-function [*4 (c.1A>G)] and increased-function [*17 (c.-806C>T)] variants on the same haplotype. These data are encouraging in that like other ethnicities and subpopulations, the Jewish population likely harbors numerous pharmacogenetic variants that are uncommon or absent in other larger racial groups and ethnicities. In addition to unique variants, common multi-ethnic variants in key drug metabolism genes (e.g., ABCB1, CYP2C8, CYP2C9, CYP2C19, CYP2D6, NAT2) have also been detected in the AJ and other Jewish groups. This review aims to summarize the currently available pharmacogenetics literature and discuss future directions for related research with this unique population.

Keywords: Ashkenazi Jewish; CYP2C19*4B; Jewish genetics; pharmacogenetics; pharmacogenomics; VKORC1 p.D36Y

References

  • 1.

    Kedar-Barnes I, Rozen P. The Jewish people: their ethnic history, genetic disorders and specific cancer susceptibility. Fam Cancer 2004;3:193–9.CrossrefGoogle Scholar

  • 2.

    Atzmon G, Hao L, Pe’er I, Velez C, Pearlman A, Palamara PF, et al. Abraham’s children in the genome era: major Jewish diaspora populations comprise distinct genetic clusters with shared Middle Eastern Ancestry. Am J Hum Genet 2010;86:850–9.CrossrefGoogle Scholar

  • 3.

    Ostrer H. A genetic profile of contemporary Jewish populations. Nat Rev Genet 2001;2:891–8.CrossrefGoogle Scholar

  • 4.

    Behar DM, Yunusbayev B, Metspalu M, Metspalu E, Rosset S, Parik J, et al. The genome-wide structure of the Jewish people. Nature 2010;466:238–42.CrossrefGoogle Scholar

  • 5.

    Ozelius LJ, Senthil G, Saunders-Pullman R, Ohmann E, Deligtisch A, Tagliati M, et al. LRRK2 G2019S as a cause of Parkinson’s disease in Ashkenazi Jews. N Engl J Med 2006;354:424–5.CrossrefGoogle Scholar

  • 6.

    Livshits G, Sokal RR, Kobyliansky E. Genetic affinities of Jewish populations. Am J Hum Genet 1991;49:131–46.Google Scholar

  • 7.

    Nebel A, Filon D, Brinkmann B, Majumder PP, Faerman M, Oppenheim A. The Y chromosome pool of Jews as part of the genetic landscape of the Middle East. Am J Hum Genet 2001;69:1095–112.CrossrefGoogle Scholar

  • 8.

    Risch N, Tang H, Katzenstein H, Ekstein J. Geographic distribution of disease mutations in the Ashkenazi Jewish population supports genetic drift over selection. Am J Hum Genet 2003;72:812–22.CrossrefGoogle Scholar

  • 9.

    Behar DM, Hammer MF, Garrigan D, Villems R, Bonne-Tamir B, Richards M, et al. MtDNA evidence for a genetic bottleneck in the early history of the Ashkenazi Jewish population. Eur J Hum Genet 2004;12:355–64.CrossrefGoogle Scholar

  • 10.

    Bray SM, Mulle JG, Dodd AF, Pulver AE, Wooding S, Warren ST. Signatures of founder effects, admixture, and selection in the Ashkenazi Jewish population. Proc Natl Acad Sci USA 2010;107:16222–7.CrossrefGoogle Scholar

  • 11.

    Kenny EE, Pe’er I, Karban A, Ozelius L, Mitchell AA, Ng SM, et al. A genome-wide scan of Ashkenazi Jewish Crohn’s disease suggests novel susceptibility loci. PLoS Genet 2012;8:e1002559.CrossrefGoogle Scholar

  • 12.

    Struewing JP, Hartge P, Wacholder S, Baker SM, Berlin M, McAdams M, et al. The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N Engl J Med 1997;336:1401–8.CrossrefGoogle Scholar

  • 13.

    Ortega VE, Meyers DA. Pharmacogenetics: implications of race and ethnicity on defining genetic profiles for personalized medicine. J Allergy Clin Immunol 2014;133:16–26.CrossrefGoogle Scholar

  • 14.

    Perera MA, Cavallari LH, Limdi NA, Gamazon ER, Konkashbaev A, Daneshjou R, et al. Genetic variants associated with warfarin dose in African-American individuals: a genome-wide association study. Lancet 2013;382:790–6.CrossrefGoogle Scholar

  • 15.

    Georgitsi M, Viennas E, Gkantouna V, Christodoulopoulou E, Zagoriti Z, Tafrali C, et al. Population-specific documentation of pharmacogenomic markers and their allelic frequencies in FINDbase. Pharmacogenomics 2011;12:49–58.CrossrefGoogle Scholar

  • 16.

    Motulsky AG. Jewish diseases and origins. Nat Genet 1995;9:99–101.CrossrefGoogle Scholar

  • 17.

    Ostrer H, Skorecki K. The population genetics of the Jewish people. Hum Genet 2013;132:119–27.CrossrefGoogle Scholar

  • 18.

    Bonne-Tamir B, Ashbel S, Bar-Shani S. Ethnic communities in Israel: the genetic blood markers of the Babylonian Jews. Am J Phys Anthropol 1978;49:457–64.CrossrefGoogle Scholar

  • 19.

    Bonne-Tamir B, Ashbel S, Bar-Shani S. Ethnic communities in Israel: the genetic blood markers of the Moroccan Jews. Am J Phys Anthropol 1978;49:465–71.CrossrefGoogle Scholar

  • 20.

    Hammer MF, Redd AJ, Wood ET, Bonner MR, Jarjanazi H, Karafet T, et al. Jewish and Middle Eastern non-Jewish populations share a common pool of Y-chromosome biallelic haplotypes. Proc Natl Acad Sci USA 2000;97:6769–74.CrossrefGoogle Scholar

  • 21.

    Olshen AB, Gold B, Lohmueller KE, Struewing JP, Satagopan J, Stefanov SA, et al. Analysis of genetic variation in Ashkenazi Jews by high density SNP genotyping. BMC Genet 2008;9:14.CrossrefGoogle Scholar

  • 22.

    Need AC, Kasperaviciute D, Cirulli ET, Goldstein DB. A genome-wide genetic signature of Jewish ancestry perfectly separates individuals with and without full Jewish ancestry in a large random sample of European Americans. Genome Biol 2009;10:R7.CrossrefGoogle Scholar

  • 23.

    Kaback M, Lim-Steele J, Dabholkar D, Brown D, Levy N, Zeiger K. Tay-Sachs disease – carrier screening, prenatal diagnosis, and the molecular era. An international perspective, 1970 to 1993. The International TSD Data Collection Network. J Am Med Assoc 1993;270:2307–15.Google Scholar

  • 24.

    Kaback MM. Population-based genetic screening for reproductive counseling: the Tay-Sachs disease model. Eur J Pediatr 2000;159(Suppl 3):S192–5.Google Scholar

  • 25.

    Scott SA, Edelmann L, Liu L, Luo M, Desnick RJ, Kornreich R. Experience with carrier screening and prenatal diagnosis for 16 Ashkenazi Jewish genetic diseases. Hum Mutat 2010;31:1240–50.CrossrefGoogle Scholar

  • 26.

    Ballew BJ, Joseph V, De S, Sarek G, Vannier JB, Stracker T, et al. A recessive founder mutation in regulator of telomere elongation helicase 1, RTEL1, underlies severe immunodeficiency and features of Hoyeraal Hreidarsson syndrome. PLoS Genet 2013;9:e1003695.Google Scholar

  • 27.

    Edvardson S, Ashikov A, Jalas C, Sturiale L, Shaag A, Fedick A, et al. Mutations in SLC35A3 cause autism spectrum disorder, epilepsy and arthrogryposis. J Med Genet 2013;50:733–9.CrossrefGoogle Scholar

  • 28.

    Edvardson S, Porcelli V, Jalas C, Soiferman D, Kellner Y, Shaag A, et al. Agenesis of corpus callosum and optic nerve hypoplasia due to mutations in SLC25A1 encoding the mitochondrial citrate transporter. J Med Genet 2013;50:240–5.CrossrefGoogle Scholar

  • 29.

    Webb B, Brandt T, Liu L, Jalas C, Liao J, Fedick A, et al. A founder mutation in COL4A3 causes autosomal recessive Alport syndrome in the Ashkenazi Jewish population. Clin Genet 2013 [Epub ahead of print].Google Scholar

  • 30.

    Zuchner S, Dallman J, Wen R, Beecham G, Naj A, Farooq A, et al. Whole-exome sequencing links a variant in DHDDS to retinitis pigmentosa. Am J Hum Genet 2011;88:201–6.CrossrefGoogle Scholar

  • 31.

    Change N, Mercier G, Lucotte G. Genetic screening of the G2019S mutation of the LRRK2 gene in Southwest European, North African, and Sephardic Jewish subjects. Genet Test 2008;12:333–9.Google Scholar

  • 32.

    Beech CM, Liyanarachchi S, Shah NP, Sturm AC, Sadiq MF, de la Chapelle A, et al. Ancient founder mutation is responsible for Imerslund-Grasbeck Syndrome among diverse ethnicities. Orphanet J Rare Dis 2011;6:74.CrossrefGoogle Scholar

  • 33.

    Kalow W. Ethnic differences in drug metabolism. Clin Pharmacokinet 1982;7:373–400.CrossrefGoogle Scholar

  • 34.

    Xie HG, Kim RB, Wood AJ, Stein CM. Molecular basis of ethnic differences in drug disposition and response. Annu Rev Pharmacol Toxicol 2001;41:815–50.CrossrefGoogle Scholar

  • 35.

    O’Donnell PH, Dolan ME. Cancer pharmacoethnicity: ethnic differences in susceptibility to the effects of chemotherapy. Clin Cancer Res 2009;15:4806–14.CrossrefGoogle Scholar

  • 36.

    Scott SA, Martis S, Peter I, Kasai Y, Kornreich R, Desnick RJ. Identification of CYP2C19*4B: pharmacogenetic implications for drug metabolism including clopidogrel responsiveness. Pharmacogenomics J 2012;12:297–305.Google Scholar

  • 37.

    Martis S, Peter I, Hulot JS, Kornreich R, Desnick RJ, Scott SA. Multi-ethnic distribution of clinically relevant CYP2C genotypes and haplotypes. Pharmacogenomics J 2013;13:369–77.CrossrefGoogle Scholar

  • 38.

    Scott SA, Khasawneh R, Peter I, Kornreich R, Desnick RJ. Combined CYP2C9, VKORC1 and CYP4F2 frequencies among racial and ethnic groups. Pharmacogenomics 2010;11:781–91.CrossrefGoogle Scholar

  • 39.

    Scott SA, Edelmann L, Kornreich R, Desnick RJ. Warfarin pharmacogenetics: CYP2C9 and VKORC1 genotypes predict different sensitivity and resistance frequencies in the Ashkenazi and Sephardi Jewish populations. Am J Hum Genet 2008;82:495–500.CrossrefGoogle Scholar

  • 40.

    Scott SA, Edelmann L, Kornreich R, Erazo M, Desnick RJ. CYP2C9, CYP2C19 and CYP2D6 allele frequencies in the Ashkenazi Jewish population. Pharmacogenomics 2007;8:721–30.CrossrefGoogle Scholar

  • 41.

    Muller P, Asher N, Heled M, Cohen SB, Risch A, Rund D. Polymorphisms in transporter and phase II metabolism genes as potential modifiers of the predisposition to and treatment outcome of de novo acute myeloid leukemia in Israeli ethnic groups. Leuk Res 2008;32:919–29.CrossrefGoogle Scholar

  • 42.

    Tomkova M, Marohnic CC, Gurwitz D, Seda O, Masters BS, Martasek P. Identification of six novel P450 oxidoreductase missense variants in Ashkenazi and Moroccan Jewish populations. Pharmacogenomics 2012;13:543–54.Google Scholar

  • 43.

    Loebstein R, Dvoskin I, Halkin H, Vecsler M, Lubetsky A, Rechavi G, et al. A coding VKORC1 Asp36Tyr polymorphism predisposes to warfarin resistance. Blood 2007;109:2477–80.CrossrefGoogle Scholar

  • 44.

    Hirsh J. Oral anticoagulant drugs. N Engl J Med 1991;324: 1865–75.Google Scholar

  • 45.

    Cavallari LH, Limdi NA. Warfarin pharmacogenomics. Curr Opin Mol Ther 2009;11:243–51.Google Scholar

  • 46.

    Kurnik D, Loebstein R, Halkin H, Gak E, Almog S. 10 years of oral anticoagulant pharmacogenomics: what difference will it make? A critical appraisal. Pharmacogenomics 2009;10:1955–65.Google Scholar

  • 47.

    Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP, et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 2005;106:2329–33.CrossrefGoogle Scholar

  • 48.

    Gage BF, Eby C, Johnson JA, Deych E, Rieder MJ, Ridker PM, et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther 2008;84:326–31.CrossrefGoogle Scholar

  • 49.

    Perini JA, Struchiner CJ, Silva-Assuncao E, Santana IS, Rangel F, Ojopi EB, et al. Pharmacogenetics of warfarin: development of a dosing algorithm for Brazilian patients. Clin Pharmacol Ther 2008;84:722–8.CrossrefGoogle Scholar

  • 50.

    Wu AH, Wang P, Smith A, Haller C, Drake K, Linder M, et al. Dosing algorithm for warfarin using CYP2C9 and VKORC1 genotyping from a multi-ethnic population: comparison with other equations. Pharmacogenomics 2008;9:169–78.CrossrefGoogle Scholar

  • 51.

    International Warfarin Pharmacogenetics Consortium, Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med 2009;360:753–64.Google Scholar

  • 52.

    Lenzini P, Wadelius M, Kimmel S, Anderson JL, Jorgensen AL, Pirmohamed M, et al. Integration of genetic, clinical, and INR data to refine warfarin dosing. Clin Pharmacol Ther 2010;87:572–8.CrossrefGoogle Scholar

  • 53.

    Lubitz SA, Scott SA, Rothlauf EB, Agarwal A, Peter I, Doheny D, et al. Comparative performance of gene-based warfarin dosing algorithms in a multiethnic population. J Thromb Haemost 2010;8:1018–26.Google Scholar

  • 54.

    Roper N, Storer B, Bona R, Fang M. Validation and comparison of pharmacogenetics-based warfarin dosing algorithms for application of pharmacogenetic testing. J Mol Diagn 2010;12:283–91.CrossrefGoogle Scholar

  • 55.

    Shin J, Cao D. Comparison of warfarin pharmacogenetic dosing algorithms in a racially diverse large cohort. Pharmacogenomics 2010;12:125–34.Google Scholar

  • 56.

    Caldwell MD, Awad T, Johnson JA, Gage BF, Falkowski M, Gardina P, et al. CYP4F2 genetic variant alters required warfarin dose. Blood 2008;111:4106–12.CrossrefGoogle Scholar

  • 57.

    Takeuchi F, McGinnis R, Bourgeois S, Barnes C, Eriksson N, Soranzo N, et al. A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet 2009;5:e1000433.CrossrefGoogle Scholar

  • 58.

    Finkelman BS, Gage BF, Johnson JA, Brensinger CM, Kimmel SE. Genetic warfarin dosing: tables versus algorithms. J Am Coll Cardiol 2011;57:612–8.CrossrefGoogle Scholar

  • 59.

    Pirmohamed M, Burnside G, Eriksson N, Jorgensen AL, Toh CH, Nicholson T, et al. A randomized trial of genotype-guided dosing of warfarin. N Engl J Med 2013;369:2294–303.CrossrefGoogle Scholar

  • 60.

    Kimmel SE, French B, Kasner SE, Johnson JA, Anderson JL, Gage BF, et al. A Pharmacogenetic versus a clinical algorithm for warfarin dosing. N Engl J Med 2013;369:2283–93.CrossrefGoogle Scholar

  • 61.

    Zineh I, Pacanowski M, Woodcock J. Pharmacogenetics and coumarin dosing – recalibrating expectations. N Engl J Med 2013;369:2273–5.CrossrefGoogle Scholar

  • 62.

    Scott SA, Jaremko M, Lubitz SA, Kornreich R, Halperin JL, Desnick RJ. CYP2C9*8 is prevalent among African-Americans: implications for pharmacogenetic dosing. Pharmacogenomics 2009;10:1243–55.Google Scholar

  • 63.

    Li T, Chang CY, Jin DY, Lin PJ, Khvorova A, Stafford DW. Identification of the gene for vitamin K epoxide reductase. Nature 2004;427:541–4.CrossrefGoogle Scholar

  • 64.

    Rost S, Fregin A, Ivaskevicius V, Conzelmann E, Hortnagel K, Pelz HJ, et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 2004;427:537–41.CrossrefGoogle Scholar

  • 65.

    Harrington DJ, Underwood S, Morse C, Shearer MJ, Tuddenham EG, Mumford AD. Pharmacodynamic resistance to warfarin associated with a Val66Met substitution in vitamin K epoxide reductase complex subunit 1. Thromb Haemost 2005;93:23–6.Google Scholar

  • 66.

    Bodin L, Horellou MH, Flaujac C, Loriot MA, Samama MM. A vitamin K epoxide reductase complex subunit-1 (VKORC1) mutation in a patient with vitamin K antagonist resistance. J Thromb Haemost 2005;3:1533–5.CrossrefGoogle Scholar

  • 67.

    D’Ambrosio RL, D’Andrea G, Cafolla A, Faillace F, Margaglione M. A new vitamin K epoxide reductase complex subunit-1 (VKORC1) mutation in a patient with decreased stability of CYP2C9 enzyme. J Thromb Haemost 2007;5:191–3.CrossrefGoogle Scholar

  • 68.

    Nakai K, Habano W, Nakai K, Fukushima N, Suwabe A, Moriya S, et al. Ethnic differences in CYP2C9*2 (Arg144Cys) and CYP2C9*3 (Ile359Leu) genotypes in Japanese and Israeli populations. Life Sci 2005;78:107–11.Google Scholar

  • 69.

    Nakai K, Tsuboi J, Okabayashi H, Fukuhiro Y, Oka T, Habano W, et al. Ethnic differences in the VKORC1 gene polymorphism and an association with warfarin dosage requirements in cardiovascular surgery patients. Pharmacogenomics 2007;8:713–9.CrossrefGoogle Scholar

  • 70.

    Watzka M, Geisen C, Bevans CG, Sittinger K, Spohn G, Rost S, et al. Thirteen novel VKORC1 mutations associated with oral anticoagulant resistance: insights into improved patient diagnosis and treatment. J Thromb Haemost 2011;9:109–18.CrossrefGoogle Scholar

  • 71.

    Shahin MH, Cavallari LH, Perera MA, Khalifa SI, Misher A, Langaee T, et al. VKORC1 Asp36Tyr geographic distribution and its impact on warfarin dose requirements in Egyptians. Thromb Haemost 2013;109:1045–50.CrossrefGoogle Scholar

  • 72.

    Kurnik D, Qasim H, Sominsky S, Lubetsky A, Markovits N, Li C, et al. Effect of the VKORC1 D36Y variant on warfarin dose requirement and pharmacogenetic dose prediction. Thromb Haemost 2012;108:781–8.CrossrefGoogle Scholar

  • 73.

    Desta Z, Zhao X, Shin JG, Flockhart DA. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet 2002;41:913–58.Google Scholar

  • 74.

    Price MJ, Tantry US, Gurbel PA. The influence of CYP2C19 polymorphisms on the pharmacokinetics, pharmacodynamics, and clinical effectiveness of P2Y(12) inhibitors. Rev Cardiovasc Med 2011;12:1–12.Google Scholar

  • 75.

    Scott SA, Sangkuhl K, Shuldiner AR, Hulot JS, Thorn CF, Altman RB, et al. PharmGKB summary: very important pharmacogene information for cytochrome P450, family 2, subfamily C, polypeptide 19. Pharmacogenet Genomics 2012;22:159–65.Google Scholar

  • 76.

    Sim SC, Ingelman-Sundberg M. The Human Cytochrome P450 (CYP) Allele Nomenclature website: a peer-reviewed database of CYP variants and their associated effects. Hum Genomics 2010;4:278–81.Google Scholar

  • 77.

    Xie HG, Prasad HC, Kim RB, Stein CM. CYP2C9 allelic variants: ethnic distribution and functional significance. Adv Drug Deliv Rev 2002;54:1257–70.CrossrefGoogle Scholar

  • 78.

    Ross KA, Bigham AW, Edwards M, Gozdzik A, Suarez-Kurtz G, Parra EJ. Worldwide allele frequency distribution of four polymorphisms associated with warfarin dose requirements. J Hum Genet 2010;55:582–9.CrossrefGoogle Scholar

  • 79.

    Goldstein JA. Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br J Clin Pharmacol 2001;52:349–55.CrossrefGoogle Scholar

  • 80.

    Goldstein JA, Ishizaki T, Chiba K, de Morais SM, Bell D, Krahn PM, et al. Frequencies of the defective CYP2C19 alleles responsible for the mephenytoin poor metabolizer phenotype in various Oriental, Caucasian, Saudi Arabian and American black populations. Pharmacogenetics 1997;7:59–64.CrossrefGoogle Scholar

  • 81.

    Sim SC, Risinger C, Dahl ML, Aklillu E, Christensen M, Bertilsson L, et al. A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther 2006;79:103–13.CrossrefGoogle Scholar

  • 82.

    Rudberg I, Mohebi B, Hermann M, Refsum H, Molden E. Impact of the ultrarapid CYP2C19*17 allele on serum concentration of escitalopram in psychiatric patients. Clin Pharmacol Ther 2008;83:322–7.CrossrefGoogle Scholar

  • 83.

    Inomata S, Nagashima A, Itagaki F, Homma M, Nishimura M, Osaka Y, et al. CYP2C19 genotype affects diazepam pharmacokinetics and emergence from general anesthesia. Clin Pharmacol Ther 2005;78:647–55.CrossrefGoogle Scholar

  • 84.

    Furuta T, Sugimoto M, Shirai N, Ishizaki T. CYP2C19 pharmacogenomics associated with therapy of Helicobacter pylori infection and gastro-esophageal reflux diseases with a proton pump inhibitor. Pharmacogenomics 2007;8:1199–210.CrossrefGoogle Scholar

  • 85.

    Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT, et al. Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med 2009;360:354–62.CrossrefGoogle Scholar

  • 86.

    Scott SA, Sangkuhl K, Stein CM, Hulot JS, Mega JL, Roden DM, et al. Clinical pharmacogenetics implementation consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin Pharmacol Ther 2013;94:317–23.CrossrefGoogle Scholar

  • 87.

    Ferguson RJ, De Morais SM, Benhamou S, Bouchardy C, Blaisdell J, Ibeanu G, et al. A new genetic defect in human CYP2C19: mutation of the initiation codon is responsible for poor metabolism of S-mephenytoin. J Pharmacol Exp Ther 1998;284:356–61.Google Scholar

  • 88.

    Garcia-Barcelo M, Chow LY, Kum Chiu HF, Wing YK, Shing Lee DT, Lam KL, et al. Frequencies of defective CYP2C19 alleles in a Hong Kong Chinese population: detection of the rare allele CYP2C19*4. Clin Chem 1999;45:2273–4.Google Scholar

  • 89.

    Scott SA, Tan Q, Baber U, Yang Y, Martis S, Bander J, et al. An allele-specific PCR system for rapid detection and discrimination of the CYP2C19 *4A, *4B, and *17 alleles: implications for clopidogrel response testing. J Mol Diagn 2013;15:783–9.Google Scholar

  • 90.

    Mega JL, Simon T, Collet JP, Anderson JL, Antman EM, Bliden K, et al. Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: a meta-analysis. J Am Med Assoc 2010;304:1821–30.CrossrefGoogle Scholar

  • 91.

    Holmes DR Jr., Dehmer GJ, Kaul S, Leifer D, O’Gara PT, Stein CM. ACCF/AHA clopidogrel clinical alert: approaches to the FDA “boxed warning”: a report of the American College of Cardiology Foundation Task Force on clinical expert consensus documents and the American Heart Association endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. J Am Coll Cardiol 2010;56:321–41.Google Scholar

  • 92.

    Hulot JS, Collet JP, Cayla G, Silvain J, Allanic F, Bellemain-Appaix A, et al. CYP2C19 but not PON1 genetic variants influence clopidogrel pharmacokinetics, pharmacodynamics, and clinical efficacy in post-myocardial infarction patients. Circ Cardiovasc Interv 2011;4:422–8.CrossrefGoogle Scholar

  • 93.

    Johnson JA, Roden DM, Lesko LJ, Ashley E, Klein TE, Shuldiner AR. Clopidogrel: a case for indication-specific pharmacogenetics. Clin Pharmacol Ther 2012;91:774–6.CrossrefGoogle Scholar

  • 94.

    Roberts JD, Wells GA, Le May MR, Labinaz M, Glover C, Froeschl M, et al. Point-of-care genetic testing for personalisation of antiplatelet treatment (RAPID GENE): a prospective, randomised, proof-of-concept trial. Lancet 2012;379:1705–11.CrossrefGoogle Scholar

  • 95.

    Pulley JM, Denny JC, Peterson JF, Bernard GR, Vnencak-Jones CL, Ramirez AH, et al. Operational implementation of prospective genotyping for personalized medicine: the design of the Vanderbilt PREDICT project. Clin Pharmacol Ther 2012;92:87–95.CrossrefGoogle Scholar

  • 96.

    Masters BS. The journey from NADPH-cytochrome P450 oxidoreductase to nitric oxide synthases. Biochem Biophys Res Commun 2005;338:507–19.Google Scholar

  • 97.

    Huang N, Agrawal V, Giacomini KM, Miller WL. Genetics of P450 oxidoreductase: sequence variation in 842 individuals of four ethnicities and activities of 15 missense mutations. Proc Natl Acad Sci USA 2008;105:1733–8.Google Scholar

  • 98.

    Agrawal V, Choi JH, Giacomini KM, Miller WL. Substrate-specific modulation of CYP3A4 activity by genetic variants of cytochrome P450 oxidoreductase. Pharmacogenet Genomics 2010;20:611–8.Google Scholar

  • 99.

    Sandee D, Morrissey K, Agrawal V, Tam HK, Kramer MA, Tracy TS, et al. Effects of genetic variants of human P450 oxidoreductase on catalysis by CYP2D6 in vitro. Pharmacogenet Genomics 2010;20:677–86.Google Scholar

  • 100.

    Agrawal V, Huang N, Miller WL. Pharmacogenetics of P450 oxidoreductase: effect of sequence variants on activities of CYP1A2 and CYP2C19. Pharmacogenet Genomics 2008;18:569–76.Google Scholar

  • 101.

    Gomes LG, Huang N, Agrawal V, Mendonca BB, Bachega TA, Miller WL. The common P450 oxidoreductase variant A503V is not a modifier gene for 21-hydroxylase deficiency. J Clin Endocrinol Metab 2008;93:2913–6.Google Scholar

  • 102.

    Owen RP, Sangkuhl K, Klein TE, Altman RB. Cytochrome P450 2D6. Pharmacogenet Genomics 2009;19:559–62.Google Scholar

  • 103.

    Crews KR, Gaedigk A, Dunnenberger HM, Leeder JS, Klein TE, Caudle KE, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for Cytochrome P450 2D6 genotype and codeine therapy: 2014 update. Clin Pharmacol Ther 2014;95:376–82.Google Scholar

  • 104.

    Hicks JK, Swen JJ, Thorn CF, Sangkuhl K, Kharasch ED, Ellingrod VL, et al. Clinical Pharmacogenetics Implementation Consortium guideline for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants. Clin Pharmacol Ther 2013;93: 402–8.CrossrefGoogle Scholar

  • 105.

    Gaedigk A. Complexities of CYP2D6 gene analysis and interpretation. Int Rev Psychiatry 2013;25:534–53.CrossrefGoogle Scholar

  • 106.

    Hicks JK, Swen JJ, Gaedigk A. Challenges in CYP2D6 phenotype assignment from genotype data: a critical assessment and call for standardization. Curr Drug Metab 2014;15:218–32.CrossrefGoogle Scholar

  • 107.

    Aquilante CL, Niemi M, Gong L, Altman RB, Klein TE. PharmGKB summary: very important pharmacogene information for cytochrome P450, family 2, subfamily C, polypeptide 8. Pharmacogenet Genomics 2013;23:721–8.Google Scholar

  • 108.

    Daily EB, Aquilante CL. Cytochrome P450 2C8 pharmacogenetics: a review of clinical studies. Pharmacogenomics 2009;10:1489–510.Google Scholar

  • 109.

    Totah RA, Rettie AE. Cytochrome P450 2C8: substrates, inhibitors, pharmacogenetics, and clinical relevance. Clin Pharmacol Ther 2005;77:341–52.Google Scholar

  • 110.

    Hein DW, Doll MA, Fretland AJ, Leff MA, Webb SJ, Xiao GH, et al. Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol Biomarkers Prev 2000;9:29–42.Google Scholar

  • 111.

    Azuma J, Ohno M, Kubota R, Yokota S, Nagai T, Tsuyuguchi K, et al. NAT2 genotype guided regimen reduces isoniazid-induced liver injury and early treatment failure in the 6-month four-drug standard treatment of tuberculosis: a randomized controlled trial for pharmacogenetics-based therapy. Eur J Clin Pharmacol 2013;69:1091–101.CrossrefGoogle Scholar

  • 112.

    Hein DW, Boukouvala S, Grant DM, Minchin RF, Sim E. Changes in consensus arylamine N-acetyltransferase gene nomenclature. Pharmacogenet Genomics 2008;18:367–8.CrossrefGoogle Scholar

  • 113.

    Sabbagh A, Darlu P, Crouau-Roy B, Poloni ES. Arylamine N-acetyltransferase 2 (NAT2) genetic diversity and traditional subsistence: a worldwide population survey. PLoS One 2011;6:e18507.CrossrefGoogle Scholar

  • 114.

    Kaback M, Lopatequi J, Portuges AR, Quindipan C, Pariani M, Salimpour-Davidov N, et al. Genetic screening in the Persian Jewish community: a pilot study. Genet Med 2010;12:628–33.CrossrefGoogle Scholar

  • 115.

    Relling MV, Klein TE. CPIC: Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network. Clin Pharmacol Ther 2011;89:464–7.CrossrefGoogle Scholar

About the article

Corresponding author: Stuart A. Scott, PhD, Assistant Professor, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1497, New York, NY, 10029, USA, Phone: +1-212-241-3780, Fax: +1-212-241-0139, E-mail:


Received: 2013-12-17

Accepted: 2014-04-04

Published Online: 2014-05-27

Published in Print: 2014-12-01


Citation Information: Drug Metabolism and Drug Interactions, Volume 29, Issue 4, Pages 221–233, ISSN (Online) 2191-0162, ISSN (Print) 0792-5077, DOI: https://doi.org/10.1515/dmdi-2013-0069.

Export Citation

©2014 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Mohammed Aboukaoud, Shoshana Israel, Chaim Brautbar, and Sara Eyal
Pharmaceutical Research, 2018, Volume 35, Number 11
[2]
Dan M. Roden, Sara L. Van Driest, Quinn S. Wells, Jonathan D. Mosley, Joshua C. Denny, and Josh F. Peterson
Circulation Research, 2018, Volume 122, Number 9, Page 1176
[4]
Dina Moubayed, Anthony J. Gifuni, and Leon Tourian
Journal of Clinical Psychopharmacology, 2017, Volume 37, Number 1, Page 112
[5]
G Moya, P Dorado, V Ferreiro, M E G Naranjo, E M Peñas-Lledó, and A LLerena
The Pharmacogenomics Journal, 2017, Volume 17, Number 4, Page 378

Comments (0)

Please log in or register to comment.
Log in