Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Drug Metabolism and Personalized Therapy

Official journal of the European Society of Pharmacogenomics and Personalised Therapy

Editor-in-Chief: Llerena, Adrián

Editorial Board: Benjeddou, Mongi / Chen, Bing / Dahl, Marja-Liisa / Devinsky, Ferdinand / Hirata, Rosario / Hubacek, Jaroslav A. / Ingelman-Sundberg, Magnus / Maitland-van der Zee, Anke-Hilse / Manolopoulos, Vangelis G. / Marc, Janja / Melichar, Bohuslav / Meyer, Urs A. / Nair, Sujit / Nofziger, Charity / Peiro, Ana / Sadee, Wolfgang / Salazar, Luis A. / Simmaco, Maurizio / Turpeinen, Miia / Schaik, Ron / Shin, Jae-Gook / Visvikis-Siest, Sophie / Zanger, Ulrich M.

4 Issues per year


CiteScore 2016: 1.40

SCImago Journal Rank (SJR) 2016: 0.413
Source Normalized Impact per Paper (SNIP) 2016: 0.537

Online
ISSN
2363-8915
See all formats and pricing
More options …
Volume 31, Issue 1

Issues

Pharmacogenetics and pharmacogenomics as tools in cancer therapy

Ana E. Rodríguez-Vicente
  • Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
  • IBSAL, IBMCC, Centro de Investigación del Cáncer, Universidad de Salamanca, CSIC, Hospital Universitario de Salamanca, Salamanca, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eva Lumbreras
  • IBSAL, IBMCC, Centro de Investigación del Cáncer, Universidad de Salamanca, CSIC, Hospital Universitario de Salamanca, Salamanca, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jesus M. Hernández
  • IBSAL, IBMCC, Centro de Investigación del Cáncer, Universidad de Salamanca, CSIC, Hospital Universitario de Salamanca, Salamanca, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Miguel Martín
  • Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Antonio Calles / Carlos López Otín
  • Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Salvador Martín Algarra / David Páez / Miquel Taron
Published Online: 2016-02-10 | DOI: https://doi.org/10.1515/dmpt-2015-0042

Abstract

Pharmacogenetics and pharmacogenomics (PGx) are rapidly growing fields that aim to elucidate the genetic basis for the interindividual differences in drug response. PGx approaches have been applied to many anticancer drugs in an effort to identify relevant inherited or acquired genetic variations that may predict patient response to chemotherapy and targeted therapies. In this article, we discuss the advances in the field of cancer pharmacogenetics and pharmacogenomics, driven by the recent technological advances and new revolutionary massive sequencing technologies and their application to elucidate the genetic bases for interindividual drug response and the development of biomarkers able to personalize drug treatments. Specifically, we present recent progress in breast cancer molecular classifiers, cell-free circulating DNA as a prognostic and predictive biomarker in cancer, patient-derived tumor xenograft models, chronic lymphocytic leukemia genomic landscape, and current pharmacogenetic advances in colorectal cancer. This review is based on the lectures presented by the speakers of the symposium “Pharmacogenetics and Pharmacogenomics as Tools in Cancer Therapy” from the VII Conference of the Spanish Pharmacogenetics and Pharmacogenomics Society (SEFF), held in Madrid (Spain) on April 21, 2015.

Keywords: circulating free DNA; mouse models; next-generation sequencing; polymorphisms; somatic mutations; tumor profiling

References

  • 1.

    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature 2000;406:747–52.Google Scholar

  • 2.

    Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012;490:61–70.Google Scholar

  • 3.

    Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005;365:1687–717.Google Scholar

  • 4.

    van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002;347:1999–2009.Google Scholar

  • 5.

    Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 2004;351:2817–26.Google Scholar

  • 6.

    van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002;415:530–6.Google Scholar

  • 7.

    Mook S, Schmidt MK, Weigelt B, Kreike B, Eekhout I, van de Vijver MJ, et al. The 70-gene prognosis signature predicts early metastasis in breast cancer patients between 55 and 70 years of age. Ann Oncol 2010;21:717–22.Google Scholar

  • 8.

    Filipits M, Rudas M, Jakesz R, Dubsky P, Fitzal F, Singer CF, et al. A new molecular predictor of distant recurrence in ER-positive, HER2-negative breast cancer adds independent information to conventional clinical risk factors. Clin Cancer Res 2011;17:6012–20.CrossrefGoogle Scholar

  • 9.

    Nielsen TO, Parker JS, Leung S, Voduc D, Ebbert M, Vickery T, et al. A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor-positive breast cancer. Clin Cancer Res 2010;16:5222–32.CrossrefGoogle Scholar

  • 10.

    Gyorffy B, Hatzis C, Sanft T, Hofstatter E, Aktas B, Pusztai L. Multigene prognostic tests in breast cancer: past, present, future. Breast Cancer Res 2015;17:11.CrossrefGoogle Scholar

  • 11.

    Mamounas EP, Tang G, Fisher B, Paik S, Shak S, Costantino JP, et al. Association between the 21-gene recurrence score assay and risk of locoregional recurrence in node-negative, estrogen receptor-positive breast cancer: results from NSABP B-14 and NSABP B-20. J Clin Oncol 2010;28:1677–83.Google Scholar

  • 12.

    Azim HA, Jr., Michiels S, Zagouri F, Delaloge S, Filipits M, Namer M, et al. Utility of prognostic genomic tests in breast cancer practice: the IMPAKT 2012 Working Group Consensus Statement. Ann Oncol 2013;24:647–54.CrossrefGoogle Scholar

  • 13.

    Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 2012;13:239–46.CrossrefGoogle Scholar

  • 14.

    Karachaliou N, Mayo-de Las Casas C, Queralt C, de Aguirre I, Melloni B, Cardenal F, et al. Association of EGFR L858R mutation in circulating free DNA with survival in the EURTAC trial. JAMA Oncol 2015;1:149–57.CrossrefGoogle Scholar

  • 15.

    Maheswaran S, Sequist LV, Nagrath S, Ulkus L, Brannigan B, Collura CV, et al. Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med 2008;359:366–77.Google Scholar

  • 16.

    Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 2012;486:532–6.Google Scholar

  • 17.

    Giraldez MD, Lozano JJ, Ramirez G, Hijona E, Bujanda L, Castells A, et al. Circulating microRNAs as biomarkers of colorectal cancer: results from a genome-wide profiling and validation study. Clin Gastroenterol Hepatol 2013;11:681–8 e3.CrossrefGoogle Scholar

  • 18.

    Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM, et al. Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol 2012;9:338–50.CrossrefGoogle Scholar

  • 19.

    Morelli MP, Calvo E, Ordonez E, Wick MJ, Viqueira BR, Lopez-Casas PP, et al. Prioritizing phase I treatment options through preclinical testing on personalized tumorgraft. J Clin Oncol 2012;30:e45–8.CrossrefGoogle Scholar

  • 20.

    Hidalgo M, Bruckheimer E, Rajeshkumar NV, Garrido-Laguna I, De Oliveira E, Rubio-Viqueira B, et al. A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer. Mol Cancer Ther 2011;10:1311–6.CrossrefGoogle Scholar

  • 21.

    Villarroel MC, Rajeshkumar NV, Garrido-Laguna I, De Jesus-Acosta A, Jones S, Maitra A, et al. Personalizing cancer treatment in the age of global genomic analyses: PALB2 gene mutations and the response to DNA damaging agents in pancreatic cancer. Mol Cancer Ther 2011;10:3–8.Google Scholar

  • 22.

    Garrido-Laguna I, Uson M, Rajeshkumar NV, Tan AC, de Oliveira E, Karikari C, et al. Tumor engraftment in nude mice and enrichment in stroma-related gene pathways predict poor survival and resistance to gemcitabine in patients with pancreatic cancer. Clin Cancer Res 2011;17:5793–800.CrossrefGoogle Scholar

  • 23.

    Garralda E, Paz K, Lopez-Casas PP, Jones S, Katz A, Kann LM, et al. Integrated next-generation sequencing and avatar mouse models for personalized cancer treatment. Clin Cancer Res 2014;20:2476–84.CrossrefGoogle Scholar

  • 24.

    Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR, Villamor N, et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 2011;475:101–5.Google Scholar

  • 25.

    Quesada V, Conde L, Villamor N, Ordonez GR, Jares P, Bassaganyas L, et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. NatGenet 2011;44:47–52.Google Scholar

  • 26.

    Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K, et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med 2011;365:2497–506.Google Scholar

  • 27.

    Ramsay AJ, Quesada V, Foronda M, Conde L, Martinez-Trillos A, Villamor N, et al. POT1 mutations cause telomere dysfunction in chronic lymphocytic leukemia. Nat Genet 2013;45:526–30.CrossrefGoogle Scholar

  • 28.

    Robles-Espinoza CD, Harland M, Ramsay AJ, Aoude LG, Quesada V, Ding Z, et al. POT1 loss-of-function variants predispose to familial melanoma. Nat Genet 2014;46:478–81.CrossrefGoogle Scholar

  • 29.

    Bainbridge MN, Armstrong GN, Gramatges MM, Bertuch AA, Jhangiani SN, Doddapaneni H, et al. Germline mutations in shelterin complex genes are associated with familial glioma. J Natl Cancer Inst 2015;107:384.CrossrefGoogle Scholar

  • 30.

    Ferreira PG, Jares P, Rico D, Gomez-Lopez G, Martinez-Trillos A, Villamor N, et al. Transcriptome characterization by RNA sequencing identifies a major molecular and clinical subdivision in chronic lymphocytic leukemia. Genome Res 2014;24:212–26.CrossrefGoogle Scholar

  • 31.

    Kulis M, Heath S, Bibikova M, Queiros AC, Navarro A, Clot G, et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat Genet 2012;44:1236–42.CrossrefGoogle Scholar

  • 32.

    Puente XS, Bea S, Valdes-Mas R, Villamor N, Gutiérrez-Abril J, Martín-Subero JI, et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 2015;526:519–24.Google Scholar

  • 33.

    Fanjul-Fernandez M, Quesada V, Cabanillas R, Cadinanos J, Fontanil T, Obaya A, et al. Cell-cell adhesion genes CTNNA2 and CTNNA3 are tumour suppressors frequently mutated in laryngeal carcinomas. Nat Commun 2013;4:2531.Google Scholar

  • 34.

    Anderson CM, Buzaid AC, Legha SS. Systemic treatments for advanced cutaneous melanoma. Oncology (Williston Park) 1995;9:1149–58; discussion 63–4, 67–8.Google Scholar

  • 35.

    Atkins MB, Lotze MT, Dutcher JP, Fisher RI, Weiss G, Margolin K, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 1999;17:2105–16.Google Scholar

  • 36.

    John L, Cowey CL. The rapid emergence of novel therapeutics in advanced malignant melanoma. Dermatol Ther (Heidelb) 2015;5:151–69.CrossrefGoogle Scholar

  • 37.

    Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H, et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 2010;467:596–9.Google Scholar

  • 38.

    Yang H, Higgins B, Kolinsky K, Packman K, Go Z, Iyer R, et al. RG7204 (PLX4032), a selective BRAFV600E inhibitor, displays potent antitumor activity in preclinical melanoma models. Cancer Res 2010;70:5518–27.CrossrefGoogle Scholar

  • 39.

    Luke JJ, Hodi FS. Vemurafenib and BRAF inhibition: a new class of treatment for metastatic melanoma. Clin Cancer Res 2012;18:9–14.CrossrefGoogle Scholar

  • 40.

    Oberholzer PA, Kee D, Dziunycz P, Sucker A, Kamsukom N, Jones R, et al. RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors. J Clin Oncol 2012;30:316–21.CrossrefGoogle Scholar

  • 41.

    Larkin J, Ascierto PA, Dreno B, Atkinson V, Liszkay G, Maio M, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med 2014;371:1867–76.Google Scholar

  • 42.

    Watters JW, McLeod HL. Cancer pharmacogenomics: current and future applications. Biochim Biophys Acta 2003;1603:99–111.Google Scholar

  • 43.

    Marcuello E, Paez D, Pare L, Salazar J, Sebio A, del Rio E, et al. A genotype-directed phase I-IV dose-finding study of irinotecan in combination with fluorouracil/leucovorin as first-line treatment in advanced colorectal cancer. Br J Cancer 2011;105:53–7.CrossrefGoogle Scholar

  • 44.

    Zocche DM, Ramirez C, Fontao FM, Costa LD, Redal MA. Global impact of KRAS mutation patterns in FOLFOX treated metastatic colorectal cancer. Front Genet 2015;6:116.Google Scholar

  • 45.

    Allegra CJ, Rumble RB, Hamilton SR, Mangu PB, Roach N, Hantel A, et al. Extended RAS gene mutation testing in metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy: American Society of Clinical Oncology Provisional Clinical Opinion Update 2015. J Clin Oncol 2015;34:179–85.Google Scholar

  • 46.

    De Roock W, Claes B, Bernasconi D, De Schutter J, Biesmans B, Fountzilas G, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 2010;11:753–62.Google Scholar

  • 47.

    Di Nicolantonio F, Martini M, Molinari F, Sartore-Bianchi A, Arena S, Saletti P, et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 2008;26:5705–12.CrossrefGoogle Scholar

  • 48.

    Van Cutsem E, Kohne CH, Lang I, Folprecht G, Nowacki MP, Cascinu S, et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol 2011;29:2011–9.Google Scholar

  • 49.

    Douillard JY, Oliner KS, Siena S, Tabernero J, Burkes R, Barugel M, et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 2013;369:1023–34.Google Scholar

  • 50.

    Bardelli A, Corso S, Bertotti A, Hobor S, Valtorta E, Siravegna G, et al. Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer. Cancer Discov 2013;3:658–73.CrossrefGoogle Scholar

  • 51.

    Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol 2003;4:915–25.CrossrefGoogle Scholar

  • 52.

    Cecchi F, Rabe DC, Bottaro DP. Targeting the HGF/Met signaling pathway in cancer therapy. Expert Opin Ther Targets 2012;16:553–72.CrossrefGoogle Scholar

  • 53.

    Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007;316:1039–43.Google Scholar

  • 54.

    Sebio A, Paez D, Salazar J, Berenguer-Llergo A, Pare-Brunet L, Lasa A, et al. Intergenic polymorphisms in the amphiregulin gene region as biomarkers in metastatic colorectal cancer patients treated with anti-EGFR plus irinotecan. Pharmacogenomics J 2014;14:256–62.CrossrefGoogle Scholar

About the article

Corresponding author: Miquel Taron, Amadix SL, Acera de Recoletos 2, 1B, Valladolid 47004, Spain, E-mail:

aAna E. Rodríguez-Vicente, Eva Lumbreras and Jesus M. Hernández contributed equally to this work.


Received: 2015-11-24

Accepted: 2016-01-04

Published Online: 2016-02-10

Published in Print: 2016-03-01


Citation Information: Drug Metabolism and Personalized Therapy, Volume 31, Issue 1, Pages 25–34, ISSN (Online) 2363-8915, ISSN (Print) 2363-8907, DOI: https://doi.org/10.1515/dmpt-2015-0042.

Export Citation

©2016 by De Gruyter. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
F. Guffanti, R. Fruscio, E. Rulli, and G. Damia
Scientific Reports, 2016, Volume 6, Number 1
[2]
S. Scintilla, L. Brustolin, A. Gambalunga, F. Chiara, A. Trevisan, C. Nardon, and D. Fregona
Journal of Inorganic Biochemistry, 2016, Volume 165, Page 159
[3]
S. Scintilla, L. Brustolin, A. Gambalunga, F. Chiara, A. Trevisan, C. Nardon, and D. Fregona
Journal of Inorganic Biochemistry, 2017, Volume 166, Page 76

Comments (0)

Please log in or register to comment.
Log in