Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Drug Metabolism and Personalized Therapy

Official journal of the European Society of Pharmacogenomics and Personalised Therapy

Editor-in-Chief: Llerena, Adrián

Editorial Board: Benjeddou, Mongi / Chen, Bing / Dahl, Marja-Liisa / Devinsky, Ferdinand / Hirata, Rosario / Hubacek, Jaroslav A. / Ingelman-Sundberg, Magnus / Maitland-van der Zee, Anke-Hilse / Manolopoulos, Vangelis G. / Marc, Janja / Melichar, Bohuslav / Meyer, Urs A. / Nair, Sujit / Nofziger, Charity / Peiro, Ana / Sadee, Wolfgang / Salazar, Luis A. / Simmaco, Maurizio / Turpeinen, Miia / Schaik, Ron / Shin, Jae-Gook / Visvikis-Siest, Sophie / Zanger, Ulrich M.


CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.277
Source Normalized Impact per Paper (SNIP) 2018: 0.446

Online
ISSN
2363-8915
See all formats and pricing
More options …
Volume 32, Issue 3

Issues

Preliminary study of the association between the elimination parameters of phenytoin and phenobarbital

Janthima Methaneethorn
  • Corresponding author
  • Pharmacokinetic Research Unit, Faculty of Pharmaceutical Sciences, Department of Pharmacy Practice, Naresuan University, Phitsanulok, Thailand, Phone: +66 55 961827, Fax: +66 55 963620
  • Center of Excellence for Environmental Health and Toxicology, Naresuan University, Phitsanulok, Thailand
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Duangchit Panomvana
  • Faculty of Pharmaceutical Sciences, Department of Pharmacy Practice, Chulalongkorn University, Bangkok, Thailand
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thaveechai Vachirayonstien
  • National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-09-05 | DOI: https://doi.org/10.1515/dmpt-2017-0017

Abstract

Background:

Therapeutic drug monitoring is essential for both phenytoin and phenobarbital therapy given their narrow therapeutic indexes. Nevertheless, the measurement of either phenytoin or phenobarbital concentrations might not be available in some rural hospitals. Information assisting individualized phenytoin and phenobarbital combination therapy is important. This study’s objective was to determine the relationship between the maximum rate of metabolism of phenytoin (Vmax) and phenobarbital clearance (CLPB), which can serve as a guide to individualized drug therapy.

Methods:

Data on phenytoin and phenobarbital concentrations of 19 epileptic patients concurrently receiving both drugs were obtained from medical records. Phenytoin and phenobarbital pharmacokinetic parameters were studied at steady-state conditions. The relationship between the elimination parameters of both drugs was determined using simple linear regression.

Results:

A high correlation coefficient between Vmax and CLPB was found [r=0.744; p<0.001 for Vmax (mg/kg/day) vs. CLPB (L/kg/day)]. Such a relatively strong linear relationship between the elimination parameters of both drugs indicates that Vmax might be predicted from CLPB and vice versa.

Conclusions:

Regression equations were established for estimating Vmax from CLPB, and vice versa in patients treated with combination of phenytoin and phenobarbital. These proposed equations can be of use in aiding individualized drug therapy.

Keywords: elimination parameters; epilepsy; phenobarbital; phenytoin

References

  • 1.

    Mani J. Combination therapy in epilepsy: what, when, how and what not! J Assoc Physicians India 2013;61(8 Suppl):40–4.PubMedGoogle Scholar

  • 2.

    Perucca E, Tomson T. The pharmacological treatment of epilepsy in adults. Lancet Neurol 2011;10:446–56.Web of SciencePubMedCrossrefGoogle Scholar

  • 3.

    Brodie MJ, Sills GJ. Combining antiepileptic drugs – rational polytherapy? Seizure 2011;20:369–75.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 4.

    Kwan P, Schachter SC, Brodie MJ. Drug-resistant epilepsy. N Engl J Med 2011;365:919–26.CrossrefPubMedGoogle Scholar

  • 5.

    Winter ME. Basic clinical pharmacokinetics, 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins, 2004.Google Scholar

  • 6.

    Cook AM, Bensalem-Owen MK. Mechanisms of action of antiepileptic drugs. Therapy 2011;8:307–13.CrossrefGoogle Scholar

  • 7.

    Davies JA. Mechanisms of action of antiepileptic drugs. Seizure 1995;4:267–71.CrossrefPubMedGoogle Scholar

  • 8.

    Kwan P, Sills GJ, Brodie MJ. The mechanisms of action of commonly used antiepileptic drugs. Pharmacol Ther 2001;90:21–34.PubMedCrossrefGoogle Scholar

  • 9.

    Deckers CL, Czuczwar SJ, Hekster YA, Kewser A, Kubova H, Meinardi H, et al. Selection of antiepileptic drug polytherapy based on mechanisms of action: the evidence reviewed. Epilepsia 2000;41:1364–74.PubMedCrossrefGoogle Scholar

  • 10.

    Ferrendelli JA. Relating pharmacology to clinical practice: the pharmacologic basis of rational polypharmacy. Neurology 1995;45(3 Suppl 2):S12–6.PubMedGoogle Scholar

  • 11.

    Ozkaynakci A, Gulcebi MI, Ergeç D, Ulucan K, Uzan M, Ozkara C, et al. The effect of polymorphic metabolism enzymes on serum phenytoin level. Neurol Sci 2015;36:397–401.CrossrefWeb of SciencePubMedGoogle Scholar

  • 12.

    Komatsu T, Yamazaki H, Asahi S, Gillam EM, Guengerich FP, Nakajima M, et al. Formation of a dihydroxy metabolite of phenytoin in human liver microsomes/cytosol: roles of cytochromes P450 2C9, 2C19, and 3A4. Drug Metab Dispos 2000;28:1361–8.PubMedGoogle Scholar

  • 13.

    Zaccara G, Perucca E. Interactions between antiepileptic drugs, and between antiepileptic drugs and other drugs. Epileptic Disord 2014;16:409–31.PubMedWeb of ScienceGoogle Scholar

  • 14.

    Patsalos PN, Perucca E. Clinically important drug interactions in epilepsy: general features and interactions between antiepileptic drugs. Lancet Neurol 2003;2:347–56.PubMedCrossrefGoogle Scholar

  • 15.

    Perucca E. Clinically relevant drug interactions with antiepileptic drugs. Br J Clin Pharmacol 2006;61:246–55.PubMedCrossrefGoogle Scholar

  • 16.

    Withrow CD, editor. Drugs for control of epilepsy: actions of neuronal networks involved in seizure disorders. Boca Raton, FL: CRC Press, 1991.Google Scholar

  • 17.

    Anderson GD. A mechanistic approach to antiepileptic drug interactions. Ann Pharmacother 1998;32:554–63.PubMedCrossrefGoogle Scholar

  • 18.

    Jolley M, Stroupe S, Schwenzer K, Wang C, Lu-Steffes M, Hill H, et al. Fluorescence polarization immunoassay. III. An automated system for therapeutic drug determination. Clin Chem 1981;27:1575–9.Google Scholar

  • 19.

    Lu-Steffes M, Pittluck G, Jolley M, Panas H, Olive D, Wang C, et al. Fluorescence polarization immunoassay IV. Determination of phenytoin and phenobarbital in human serum and plasma. Clin Chem 1982;28:2278–82.PubMedGoogle Scholar

  • 20.

    Transon C, Lecoeur S, Leemann T, Beaune P, Dayer P. Interindividual variability in catalytic activity and immunoreactivity of three major human liver cytochrome P450 isozymes. Eur J Clin Pharmacol 1996;51:79–85.CrossrefPubMedGoogle Scholar

  • 21.

    Kutt H, Harden CL, editors. Antiepileptic drugs pharmacology and therapeutics. Berlin: Springer-Verlag, 1999.Google Scholar

  • 22.

    Chang TaG AJ, editor. Antiepileptic drugs. New York, NY: Raven Press, 1982.Web of ScienceGoogle Scholar

  • 23.

    McNamara JO, editor. Goodman and Gilman’s the phamacological basis fo therapeutics, 11th ed. New York, NY: McGraw-Hill, 2006.Google Scholar

  • 24.

    Garnett WR, Anderson GD, Collins RJ, editors. Applied pharmacokinetics and pharmacodynamic, 4th ed. Baltimore: Lippincott Williams and Wilkins, 2005.Google Scholar

  • 25.

    Panomvana D, Methaneethorn J, Vachirayonstien T. Correlation between elimination parameters of phenytoin and carbamazepine in patients with epilepsy receiving both drugs concomitantly: a preliminary study. Pharm Med 2017;31:119–24.Web of ScienceCrossrefGoogle Scholar

  • 26.

    Sahi J, Shord SS, Lindley C, Ferguson S, LeCluyse EL. Regulation of cytochrome P450 2C9 expression in primary cultures of human hepatocytes. J Biochem Mol Toxicol 2009;23:43–58.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 27.

    Helsby NA, Burns KE. Molecular mechanisms of genetic variation and transcriptional regulation of CYP2C19. Front Genet 2012;3:206.PubMedGoogle Scholar

  • 28.

    Miller R, Bill PL, Du Toit J. Phenytoin auto-induction? Case reports. S Afr Med J 1989;75:332–3.PubMedGoogle Scholar

  • 29.

    Chetty M, Miller R, Seymour MA. Phenytoin auto-induction. Ther Drug Monit 1998;20:60–2.PubMedCrossrefGoogle Scholar

  • 30.

    Albright PS, Bruni J. Pharmacokinetic interactions of antiepileptic drugs. Can J Neurol Sci 1984;11:247–51.PubMedCrossrefGoogle Scholar

  • 31.

    Kutt H. Interactions of antiepileptic drugs. Epilepsia 1975;16:393–402.PubMedCrossrefGoogle Scholar

  • 32.

    Kuranari M, Tatsukawa H, Seike M, Saikawa T, Ashikari Y, Kodama Y, et al. Effect of phenytoin on phenobarbital pharmacokinetics in a patient with epilepsy. Ann Pharmacother 1995;29:83–4.CrossrefGoogle Scholar

  • 33.

    Hart SN, Wang S, Nakamoto K, Wesselman C, Li Y, Zhong XB. Genetic polymorphisms in cytochrome P450 oxidoreductase influence microsomal P450-catalyzed drug metabolism. Pharmacogenet Genom 2008;18:11–24.Web of ScienceCrossrefGoogle Scholar

  • 34.

    Vormfelde SV, Brockmoller J, Bauer S, Herchenhein P, Kuon J, Meineke I, et al. Relative impact of genotype and enzyme induction on the metabolic capacity of CYP2C9 in healthy volunteers. Clin Pharmacol Ther 2009;86:54–61.Web of SciencePubMedCrossrefGoogle Scholar

  • 35.

    Gerbal-Chaloin S, Pascussi JM, Pichard-Garcia L, Daujat M, Waechter F, Fabre JM, et al. Induction of CYP2C genes in human hepatocytes in primary culture. Drug Metab Dispos 2001;29:242–51.PubMedGoogle Scholar

About the article

Corresponding author: Janthima Methaneethorn, PhD, Pharmacokinetic Research Unit, Faculty of Pharmaceutical Sciences, Department of Pharmacy Practice, Naresuan University, Phitsanulok, Thailand, Phone: +66 55 961827, Fax: +66 55 963620


Received: 2017-05-11

Accepted: 2017-08-03

Published Online: 2017-09-05

Published in Print: 2017-09-26


Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

Ethical approval: The study protocol was reviewed and approved by the Ethics Committee at Prasart Neurological Institute.


Citation Information: Drug Metabolism and Personalized Therapy, Volume 32, Issue 3, Pages 151–156, ISSN (Online) 2363-8915, ISSN (Print) 2363-8907, DOI: https://doi.org/10.1515/dmpt-2017-0017.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in