Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Drug Metabolism and Personalized Therapy

Official journal of the European Society of Pharmacogenomics and Personalised Therapy

Editor-in-Chief: Llerena, Adrián

Editorial Board: Benjeddou, Mongi / Chen, Bing / Dahl, Marja-Liisa / Devinsky, Ferdinand / Hirata, Rosario / Hubacek, Jaroslav A. / Ingelman-Sundberg, Magnus / Maitland-van der Zee, Anke-Hilse / Manolopoulos, Vangelis G. / Marc, Janja / Melichar, Bohuslav / Meyer, Urs A. / Nair, Sujit / Nofziger, Charity / Peiro, Ana / Sadee, Wolfgang / Salazar, Luis A. / Simmaco, Maurizio / Turpeinen, Miia / Schaik, Ron / Shin, Jae-Gook / Visvikis-Siest, Sophie / Zanger, Ulrich M.

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.277
Source Normalized Impact per Paper (SNIP) 2018: 0.446

See all formats and pricing
More options …
Volume 32, Issue 3


Effects of the genetic variants of organic cation transporters 1 and 3 on the pharmacokinetics of metformin in Jordanians

Nancy Hakooz
  • Corresponding author
  • Faculty of Pharmacy, University of Jordan, Amman 11942, Jordan
  • Faculty of Pharmacy, Zarqa University, Zarqa 13132, Jordan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yazun Bashir Jarrar / Malik Zihlif / Amer Imraish / Saja Hamed / Tawfiq Arafat
Published Online: 2017-09-01 | DOI: https://doi.org/10.1515/dmpt-2017-0019



Human response to the antidiabetic metformin is influenced by some factors, such as genetic variants in the SLC22A genes. This study aimed to determine the frequency of main SLC22A1 and SLC22A3 genetic variants and their influence on metformin pharmacokinetics among healthy unrelated Arab Jordanians.

Patients and methods:

The SLC22A1 and SLC22A3 genes were genotyped by DNA sequencing of exons 1, 3, 7, and 9 in the SLC22A1 gene and exons 6, 7, and 9 in the SLC22A3 gene. Then, a clinical pharmacokinetic study was conducted on 26 healthy volunteers. The pharmacokinetic parameters were calculated using non-compartmental model analysis. The study was an open-label, randomized study with single 1000 mg metformin administration.


Results showed that volunteers with SLC22A3 rs8187722 variant had higher (χ2, p<0.05) metformin Cmax and AUC values than the wild SLC22A3 volunteers, whereas T½ and Kel were not affected. In addition, volunteers with the heterozygote SLC22A3 rs2292334 variant had significantly higher (χ2, p<0.05) metformin Cmax and AUC and lower Kel values than the wild-type SLC22A3 genotype.


The SLC22A3 rs8187722 and rs2292334 genetic variants affected metformin pharmacokinetics among a clinical sample of Jordanians. The findings may increase our understanding of the inter-individual and inter-ethnic variations in metformin response.

Keywords: Jordanians; metformin; OCT; pharmacokinetics; SLC22A


  • 1.

    Reitman ML, Schadt EE. Pharmacogenetics of metformin response: a step in the path toward personalized medicine. J Clin Invest 2007;117:1226–9.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 2.

    Motohashi H, Inui K. Organic cation transporter OCTs (SLC22) and MATEs (SLC47) in the human kidney. AAPS J 2013;15:581–8.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 3.

    He X, Garza D, Nigam SK, Chang G. Multispecific organic cation transporter 1 (OCT1) from bos taurus has high affinity and slow binding kinetics towards prostaglandin E2. PLoS One 2016;11:1–12.Web of ScienceGoogle Scholar

  • 4.

    Zhang S, Lovejoy KS, Shima JE, Lagpacan LL, Shu Y, Lapuk A, et al. Organic cation transporters are determinants of oxaliplatin cytotoxicity. Cancer Res 2006;66:8847–57.PubMedCrossrefGoogle Scholar

  • 5.

    Shu Y, Brown C, Castro RA, Shi RJ, Lin ET, Owen RP, et al. Effect of genetic variation in the organic cation transporter 1, OCT1, on metformin pharmacokinetics. Clin Pharmacol Ther 2008;83:273–80.CrossrefWeb of SciencePubMedGoogle Scholar

  • 6.

    Wang DS, Jonker JW, Kato Y, Kusuhara H, Schinkel AH, Sugiyama Y. Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J Pharmacol Exp Ther 2002;302:510–5.PubMedCrossrefGoogle Scholar

  • 7.

    Becker ML, Visser LE, van Schaik RH, Hofman A, Uitterlinden AG, Stricker BH. OCT1 polymorphism is associated with response and survival time in anti-Parkinsonian drug users. Neurogenetics 2011;12:79–82.Web of SciencePubMedCrossrefGoogle Scholar

  • 8.

    Chen L, Takizawa M, Chen E, Schlessinger A, Segenthelar J, Choi JH, et al. Genetic polymorphisms in organic cation transporter 1 (OCT1) in Chinese and Japanese populations exhibit altered function. J Pharmacol Exp Ther 2010;335:42–50.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 9.

    Semiz S, Dujic T, Causevic A. Pharmacogenetics and personalized treatment of type 2 diabetes. Biochem Med (Zagreb) 2013;23:154–71.PubMedGoogle Scholar

  • 10.

    Tzvetkov MV, Vormfelde SV, Balen D, Meineke I, Schmidt T, Sehrt D, et al. The effects of genetic polymorphisms in the organic cation transporters OCT1, OCT2, and OCT3 on the renal clearance of metformin. Clin Pharmacol Ther 2009;86:299–306.Web of ScienceCrossrefPubMedGoogle Scholar

  • 11.

    Chen L, Pawlikowski B, Schlessinger A, More SS, Stryke D, Johns SJ, et al. Role of organic cation transporter 3 (SLC22A3) and its missense variants in the pharmacologic action of metformin. Pharmacogenet Genomics 2010;20:687–99.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 12.

    Seitz T, Stalmann R, Dalila N, Chen J, Pojar S, Dos Santos Pereira JN, et al. Global genetic analyses reveal strong inter-ethnic variability in the loss of activity of the organic cation transporter OCT1. Genome Med 2015;7:56.Web of ScienceCrossrefPubMedGoogle Scholar

  • 13.

    Yoon H, Cho HY, Yoo HD, Kim SM, Lee YB. Influences of organic cation transporter polymorphisms on the population pharmacokinetics of metformin in healthy subjects. AAPS J 2013;15:571–80.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 14.

    Vlahov V, Thyroff-Friesinger U, Koytchev R, Bakracheva N, Gatchev E. Bioequivalence studies with metformin: comparability of reference tablets from different origins. Int J Clin Pharmacol Ther 2005;43:457–62.PubMedCrossrefGoogle Scholar

  • 15.

    ICH harmonized tripartite guideline: Guideline for Good Clinical Practice. International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use. J Postgrad Med 2001;47:45–50.PubMedGoogle Scholar

  • 16.

    Kar M, Choudhury PK. HPLC method for estimation of metformin hydrochloride in formulated microspheres and tablet dosage form. Indian J Pharm Sci 2009;71:318–20.CrossrefWeb of SciencePubMedGoogle Scholar

  • 17.

    Wu X, Huang W, Ganapathy ME, Wang H, Kekuda R, Conway SJ, et al. Structure, function, and regional distribution of the organic cation transporter OCT3 in the kidney. Am J Physiol Renal Physiol 2000;279:F449–58.PubMedGoogle Scholar

  • 18.

    Jarrar YB, Ismail S, Irshaid YM. N-Acetyltransferase-2 (NAT2) genotype frequency among Jordanian volunteers. Int J Clin Pharmacol Ther 2010;48:688–94.CrossrefPubMedGoogle Scholar

  • 19.

    Ossaily S, Zgheib NK. The pharmacogenetics of drug metabolizing enzymes in the Lebanese population. Drug Metabol Drug Interact 2014;29:81–90.PubMedGoogle Scholar

  • 20.

    Sanchez-Velasco P, Karadsheh NS, Garcia-Martin A, Ruiz de Alegria C, Leyva-Cobian F. Molecular analysis of HLA allelic frequencies and haplotypes in Jordanians and comparison with other related populations. Hum Immunol 2001;62:901–9.PubMedCrossrefGoogle Scholar

  • 21.

    McLellan RA, Oscarson M, Seidegard J, Evans DA, Ingelman-Sundberg M. Frequent occurrence of CYP2D6 gene duplication in Saudi Arabians. Pharmacogenetics 1997;7:187–91.CrossrefPubMedGoogle Scholar

  • 22.

    Zihlif M, Imraish A, Irshaid YM. Frequency of certain single-nucleotide polymorphisms and duplication of CYP2D6 in the Jordanian population. Genet Test Mol Biomarkers 2012;16: 1201–5.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 23.

    Ozer M, Demirci Y, Hizel C, Sarikaya S, Karalti I, Kaspar C, et al. Impact of genetic factors (CYP2C9, VKORC1 and CYP4F2) on warfarin dose requirement in the Turkish population. Basic Clin Pharmacol Toxicol 2013;112:209–14.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 24.

    Alsmadi O, John SE, Thareja G, Hebbar P, Antony D, Behbehani K, et al. Genome at juncture of early human migration: a systematic analysis of two whole genomes and thirteen exomes from Kuwaiti population subgroup of inferred Saudi Arabian tribe ancestry. PLoS One 2014;9:1–19.Web of ScienceGoogle Scholar

  • 25.

    Hakooz N, Alzubiedi S, Yousef AM, Arafat T, Dajani R, Ababneh N, et al. UDP-glucuronosyltransferase 1A4 (UGT1A4) polymorphisms in a Jordanian population. Mol Biol Rep 2012;39:7763–8.Web of ScienceCrossrefGoogle Scholar

  • 26.

    Piel FB, Adamkiewicz TV, Amendah D, Williams TN, Gupta S, Grosse SD. Observed and expected frequencies of structural hemoglobin variants in newborn screening surveys in Africa and the Middle East: deviations from Hardy-Weinberg equilibrium. Genet Med 2016;18:265–74.Web of SciencePubMedCrossrefGoogle Scholar

  • 27.

    The International HapMap Project. Opinion: integrating ethics and science in the international HapMap project. Nature 2003;426:789–96.Google Scholar

  • 28.

    Jarrar YB, Cha EY, Seo KA, Ghim JL, Kim HJ, Kim DH, et al. Determination of major UDP-glucuronosyltransferase enzymes and their genotypes responsible for 20-HETE glucuronidation. J Lipid Res 2014;55:2334–42.CrossrefWeb of SciencePubMedGoogle Scholar

  • 29.

    Stocker SL, Morrissey KM, Yee SW, Castro RA, Xu L, Dahlin A, et al. The effect of novel promoter variants in MATE1 and MATE2 on the pharmacokinetics and pharmacodynamics of metformin. Clin Pharmacol Ther 2013;93:186–94.CrossrefWeb of SciencePubMedGoogle Scholar

  • 30.

    Cho SK, Chung JY. The MATE1 rs2289669 polymorphism affects the renal clearance of metformin following ranitidine treatment. Int J Clin Pharmacol Ther 2016;54:253–62.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 31.

    Kirchheiner J, Ufer M, Walter EC, Kammerer B, Kahlich R, Meisel C, et al. Effects of CYP2C9 polymorphisms on the pharmacokinetics of R- and S-phenprocoumon in healthy volunteers. Pharmacogenetics 2004;14:19–26.PubMedCrossrefGoogle Scholar

  • 32.

    Kinzig-Schippers M, Tomalik-Scharte D, Jetter A, Scheidel B, Jakob V, Rodamer M, et al. Should we use N-acetyltransferase type 2 genotyping to personalize isoniazid doses? Antimicrob Agents Chemother 2005;49:1733–8.CrossrefPubMedGoogle Scholar

About the article

Received: 2017-05-31

Accepted: 2017-08-09

Published Online: 2017-09-01

Published in Print: 2017-09-26

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: This work was supported by a grant of the Deanship of Academic Research at The University of Jordan.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

Citation Information: Drug Metabolism and Personalized Therapy, Volume 32, Issue 3, Pages 157–162, ISSN (Online) 2363-8915, ISSN (Print) 2363-8907, DOI: https://doi.org/10.1515/dmpt-2017-0019.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in