Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Drug Metabolism and Personalized Therapy

Official journal of the European Society of Pharmacogenomics and Personalised Therapy

Editor-in-Chief: Llerena, Adrián

Editorial Board: Benjeddou, Mongi / Chen, Bing / Dahl, Marja-Liisa / Devinsky, Ferdinand / Hirata, Rosario / Hubacek, Jaroslav A. / Ingelman-Sundberg, Magnus / Maitland-van der Zee, Anke-Hilse / Manolopoulos, Vangelis G. / Marc, Janja / Melichar, Bohuslav / Meyer, Urs A. / Nair, Sujit / Nofziger, Charity / Peiro, Ana / Sadee, Wolfgang / Salazar, Luis A. / Simmaco, Maurizio / Turpeinen, Miia / Schaik, Ron / Shin, Jae-Gook / Visvikis-Siest, Sophie / Zanger, Ulrich M.

4 Issues per year


CiteScore 2017: 1.46

SCImago Journal Rank (SJR) 2017: 0.531
Source Normalized Impact per Paper (SNIP) 2017: 0.645

Online
ISSN
2363-8915
See all formats and pricing
More options …
Volume 33, Issue 1

Issues

Metabolism and mechanisms of action of hyaluronan in human biology

Reenu Anne Joy
  • Molecular Diagnostics Division, Department of Medical Oncology and Department of Biochemistry, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Narendranath Vikkath
  • Molecular Diagnostics Division, Department of Medical Oncology and Department of Biochemistry, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Prasanth S. AriyannurORCID iD: http://orcid.org/0000-0003-0888-8094
Published Online: 2018-02-14 | DOI: https://doi.org/10.1515/dmpt-2017-0031

Abstract

Hyaluronan is a ubiquitous high-molecular weight polymer of repeated disaccharides of glucuronic acid and N-acetylglucosamine. It is a membrane-bound, viscous material extruded into the extracellular matrix after being synthesized in the cytoplasm by hyaluronan synthases complex and a regulated degradation by a group of enzymes called hyaluronidases. Hyaluronan has varied biological roles on many vital organismal functions, such as cellular and tissue development, migration and repair after injury or inflammation and cancer genesis. Hyaluronan in the tissue microenvironment is regulated by its concentration as well as the chain length of the polysaccharide. Many functions of hyaluronan are mediated by specific receptors at the cellular level, though its general physiochemical properties facilitate and coordinate many organ functions as well as in development. These fundamental characteristics of hyaluronan are reviewed, focusing on human biological context.

Keywords: CD44; glycosaminoglycan; human biology; hyaluronan; inflammation; RHAMM; tissue injury

References

  • 1.

    Balazs EA, Laurent TC, Jeanloz RW. Nomenclature of hyaluronic acid. Biochem J 1986;235:903.PubMedCrossrefGoogle Scholar

  • 2.

    Weigel PH. The hyaluronan synthases. Chemistry and biology of hyaluronan. Amsterdam: Elsevier, 2004:553–67.Google Scholar

  • 3.

    DeAngelis PL. Hyaluronan synthases: mechanistic studies and biotechnological applications. Hyaluronan. Amsterdam: Elsevier, 2002:227–36.Google Scholar

  • 4.

    Fraser JR, Laurent TC, Laurent UB. Hyaluronan: its nature, distribution, functions and turnover. J Intern Med 1997;242:27–33.CrossrefPubMedGoogle Scholar

  • 5.

    Stern R. Hyaluronan in cancer biology. 1st ed. In: Stern R, editor. San Diego, CA. USA: Academic Press, Elsevier Inc., 2009.Google Scholar

  • 6.

    Kujawa MJ, Carrino DA, Caplan AI. Substrate-bonded hyaluronic acid exhibits a size-dependent stimulation of chondrogenic differentiation of stage 24 limb mesenchymal cells in culture. Dev Biol 1986;114:519–28.PubMedCrossrefGoogle Scholar

  • 7.

    Horton MR, McKee CM, Bao C, Liao F, Farber JM, Hodge-DuFour J, et al. Hyaluronan fragments synergize with interferon-gamma to induce the C-X-C chemokines mig and interferon-inducible protein-10 in mouse macrophages. J Biol Chem 1998;273:35088–94.CrossrefPubMedGoogle Scholar

  • 8.

    Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T, et al. Oligosaccharides of hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med 2002;195:99–111.CrossrefPubMedGoogle Scholar

  • 9.

    West DC, Hampson IN, Arnold F, Kumar S. Angiogenesis induced by degradation products of hyaluronic acid. Science 1985;228:1324–6.PubMedCrossrefGoogle Scholar

  • 10.

    Itano N, Kimata K. Altered hyaluronan biosynthesis in cancer progression. Hyaluronan in cancer biology. Amsterdam: Elsevier, 2009:171–85.Google Scholar

  • 11.

    Liang J, Jiang D, Noble PW. Hyaluronan as a therapeutic target in human diseases. Adv Drug Deliv Rev 2016;97:186–203.CrossrefPubMedGoogle Scholar

  • 12.

    D’Agostino A, Stellavato A, Corsuto L, Diana P, Filosa R, La Gatta A, et al. Is molecular size a discriminating factor in hyaluronan interaction with human cells? Carbohydr Polym 2017;157:21–30.CrossrefGoogle Scholar

  • 13.

    Babasola O, Rees-Milton KJ, Bebe S, Wang J, Anastassiades TP. Chemically modified N-acylated hyaluronan fragments modulate proinflammatory cytokine production by stimulated human macrophages. J Biol Chem 2014;289:24779–91.CrossrefPubMedGoogle Scholar

  • 14.

    Weigel PH, DeAngelis PL. Hyaluronan synthases: a decade-plus of novel glycosyltransferases. J Biol Chem 2007;282:36777–81.PubMedCrossrefGoogle Scholar

  • 15.

    Necas J, Bartosikova L, Brauner P, Kolar J. Hyaluronic acid (hyaluronan): a review. Vet Med-Czech 2008;53:397–411.Google Scholar

  • 16.

    Spicer AP, McDonald JA. Characterization and molecular evolution of a vertebrate hyaluronan synthase gene family. J Biol Chem 1998;273:1923–32.PubMedCrossrefGoogle Scholar

  • 17.

    Spicer AP, Seldin MF, Olsen AS, Brown N, Wells DE, Doggett NA, et al. Chromosomal localization of the human and mouse hyaluronan synthase genes. Genomics 1997;41:493–7.PubMedCrossrefGoogle Scholar

  • 18.

    Rosa F, Sargent TD, Rebbert ML, Michaels GS, Jamrich M, Grunz H, et al. Accumulation and decay of DG42 gene products follow a gradient pattern during Xenopus embryogenesis. Dev Biol 1988;129:114–23.PubMedCrossrefGoogle Scholar

  • 19.

    Weigel PH. Functional characteristics and catalytic mechanisms of the bacterial hyaluronan synthases. IUBMB Life 2002;54:201–11.PubMedCrossrefGoogle Scholar

  • 20.

    Campbell JA, Davies GJ, Bulone V, Henrissat B. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J 1997;326(Pt 3):929–39.PubMedCrossrefGoogle Scholar

  • 21.

    Weigel PH. Hyaluronan synthase: the mechanism of initiation at the reducing end and a pendulum model for polysaccharide translocation to the cell exterior. Int J Cell Biol 2015;2015:367579.Google Scholar

  • 22.

    Schulz T, Schumacher U, Prehm P. Hyaluronan export by the ABC transporter MRP5 and its modulation by intracellular cGMP. J Biol Chem 2007;282:20999–1004.CrossrefPubMedGoogle Scholar

  • 23.

    Thomas NK, Brown TJ. ABC transporters do not contribute to extracellular translocation of hyaluronan in human breast cancer in vitro. Exp Cell Res 2010;316:1241–53.PubMedCrossrefGoogle Scholar

  • 24.

    Hubbard C, McNamara JT, Azumaya C, Patel MS, Zimmer J. The hyaluronan synthase catalyzes the synthesis and membrane translocation of hyaluronan. J Mol Biol 2012;418:21–31.CrossrefPubMedGoogle Scholar

  • 25.

    Heldin P, Karousou E, Skandalis SS. Growth factor regulation of hyaluronan deposition in malignancies. Hyaluronan in cancer biology: Elsevier, 2009:37–50.Google Scholar

  • 26.

    Itano N, Sawai T, Yoshida M, Lenas P, Yamada Y, Imagawa M, et al. Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J Biol Chem 1999;274:25085–92.PubMedCrossrefGoogle Scholar

  • 27.

    Monslow J, Sato N, Mack JA, Maytin EV. Wounding-induced synthesis of hyaluronic acid in organotypic epidermal cultures requires the release of heparin-binding EGF and activation of the EGFR. J Invest Dermatol 2009;129:2046–58.CrossrefPubMedGoogle Scholar

  • 28.

    Makkonen KM, Pasonen-Seppanen S, Torronen K, Tammi MI, Carlberg C. Regulation of the hyaluronan synthase 2 gene by convergence in cyclic AMP response element-binding protein and retinoid acid receptor signaling. J Biol Chem 2009;284:18270–81.CrossrefPubMedGoogle Scholar

  • 29.

    Saavalainen K, Pasonen-Seppanen S, Dunlop TW, Tammi R, Tammi MI, Carlberg C. The human hyaluronan synthase 2 gene is a primary retinoic acid and epidermal growth factor responding gene. J Biol Chem 2005;280:14636–44.CrossrefPubMedGoogle Scholar

  • 30.

    Tammi RH, Passi AG, Rilla K, Karousou E, Vigetti D, Makkonen K, et al. Transcriptional and post-translational regulation of hyaluronan synthesis. FEBS J 2011;278:1419–28.CrossrefPubMedGoogle Scholar

  • 31.

    Zhang W, Watson CE, Liu C, Williams KJ, Werth VP. Glucocorticoids induce a near-total suppression of hyaluronan synthase mRNA in dermal fibroblasts and in osteoblasts: a molecular mechanism contributing to organ atrophy. Biochem J 2000;349(Pt 1):91–7.CrossrefPubMedGoogle Scholar

  • 32.

    Stuhlmeier KM, Pollaschek C. Differential effect of transforming growth factor beta (TGF-beta) on the genes encoding hyaluronan synthases and utilization of the p38 MAPK pathway in TGF-beta-induced hyaluronan synthase 1 activation. J Biol Chem 2004;279:8753–60.PubMedCrossrefGoogle Scholar

  • 33.

    Sugiyama Y, Shimada A, Sayo T, Sakai S, Inoue S. Putative hyaluronan synthase mRNA are expressed in mouse skin and TGF-beta upregulates their expression in cultured human skin cells. J Invest Dermatol 1998;110:116–21.CrossrefPubMedGoogle Scholar

  • 34.

    Recklies AD, White C, Melching L, Roughley PJ. Differential regulation and expression of hyaluronan synthases in human articular chondrocytes, synovial cells and osteosarcoma cells. Biochem J 2001;354(Pt 1):17–24.PubMedCrossrefGoogle Scholar

  • 35.

    Vigetti D, Genasetti A, Karousou E, Viola M, Clerici M, Bartolini B, et al. Modulation of hyaluronan synthase activity in cellular membrane fractions. J Biol Chem 2009;284:30684–94.CrossrefPubMedGoogle Scholar

  • 36.

    Bourguignon LY, Gilad E, Peyrollier K. Heregulin-mediated ErbB2-ERK signaling activates hyaluronan synthases leading to CD44-dependent ovarian tumor cell growth and migration. J Biol Chem 2007;282:19426–41.CrossrefPubMedGoogle Scholar

  • 37.

    Vigetti D, Clerici M, Deleonibus S, Karousou E, Viola M, Moretto P, et al. Hyaluronan synthesis is inhibited by adenosine monophosphate-activated protein kinase through the regulation of HAS2 activity in human aortic smooth muscle cells. J Biol Chem 2011;286:7917–24.PubMedCrossrefGoogle Scholar

  • 38.

    Yamane T, Kobayashi-Hattori K, Oishi Y. Adiponectin promotes hyaluronan synthesis along with increases in hyaluronan synthase 2 transcripts through an AMP-activated protein kinase/peroxisome proliferator-activated receptor-alpha-dependent pathway in human dermal fibroblasts. Biochem Biophys Res Commun 2011;415:235–8.CrossrefPubMedGoogle Scholar

  • 39.

    Vigetti D, Karousou E, Viola M, Deleonibus S, De Luca G, Passi A. Hyaluronan: biosynthesis and signaling. Biochim Biophys Acta 2014;1840:2452–9.PubMedCrossrefGoogle Scholar

  • 40.

    Nardini M, Ori M, Vigetti D, Gornati R, Nardi I, Perris R. Regulated gene expression of hyaluronan synthases during Xenopus laevis development. Gene Expr Patterns 2004;4:303–8.PubMedCrossrefGoogle Scholar

  • 41.

    Vigetti D, Viola M, Gornati R, Ori M, Nardi I, Passi A, et al. Molecular cloning, genomic organization and developmental expression of the Xenopus laevis hyaluronan synthase 3. Matrix Biol 2003;22:511–7.PubMedCrossrefGoogle Scholar

  • 42.

    Camenisch TD, Spicer AP, Brehm-Gibson T, Biesterfeldt J, Augustine ML, Calabro A, Jr., et al. Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J Clin Invest 2000;106:349–60.PubMedCrossrefGoogle Scholar

  • 43.

    Arranz AM, Perkins KL, Irie F, Lewis DP, Hrabe J, Xiao F, et al. Hyaluronan deficiency due to Has3 knock-out causes altered neuronal activity and seizures via reduction in brain extracellular space. J Neurosci 2014;34:6164–76.PubMedCrossrefGoogle Scholar

  • 44.

    Mack JA, Feldman RJ, Itano N, Kimata K, Lauer M, Hascall VC, et al. Enhanced inflammation and accelerated wound closure following tetraphorbol ester application or full-thickness wounding in mice lacking hyaluronan synthases Has1 and Has3. J Invest Dermatol 2012;132:198–207.PubMedCrossrefGoogle Scholar

  • 45.

    Tien JY, Spicer AP. Three vertebrate hyaluronan synthases are expressed during mouse development in distinct spatial and temporal patterns. Dev Dyn 2005;233:130–41.CrossrefPubMedGoogle Scholar

  • 46.

    Hamerman D, Todaro GJ, Green H. The production of hyaluronate by spontaneously established cell lines and viral transformed lines of fibroblastic origin. Biochim Biophys Acta 1965;101:343–51.CrossrefPubMedGoogle Scholar

  • 47.

    Hopwood JJ, Dorfman A. Glycosaminoglycan synthesis by cultured human skin fibroblasts after transformation with simian virus 40. J Biol Chem 1977;252:4777–85.PubMedGoogle Scholar

  • 48.

    Jacobson A, Brinck J, Briskin MJ, Spicer AP, Heldin P. Expression of human hyaluronan synthases in response to external stimuli. Biochem J 2000;348(Pt 1):29–35.CrossrefPubMedGoogle Scholar

  • 49.

    Li Y, Li L, Brown TJ, Heldin P. Silencing of hyaluronan synthase 2 suppresses the malignant phenotype of invasive breast cancer cells. Int J Cancer 2007;120:2557–67.PubMedCrossrefGoogle Scholar

  • 50.

    Itano N, Sawai T, Atsumi F, Miyaishi O, Taniguchi S, Kannagi R, et al. Selective expression and functional characteristics of three mammalian hyaluronan synthases in oncogenic malignant transformation. J Biol Chem 2004;279:18679–87.CrossrefPubMedGoogle Scholar

  • 51.

    Meyer K, Rapport MM. Hyaluronidases. Adv Enzymol Relat Subj Biochem 1952;13:199–236.PubMedGoogle Scholar

  • 52.

    Wang W, Wang J, Li F. Hyaluronidase and chondroitinase. In: Atassi M, editor. Protein reviews advances in experimental medicine and biology, vol. 925. Singapore: Springer, 2016:75–87.Google Scholar

  • 53.

    Gmachl M, Sagan S, Ketter S, Kreil G. The human sperm protein PH-20 has hyaluronidase activity. FEBS Lett 1993;336:545–8.CrossrefPubMedGoogle Scholar

  • 54.

    Csoka AB, Frost GI, Heng HH, Scherer SW, Mohapatra G, Stern R. The hyaluronidase gene HYAL1 maps to chromosome 3p21.2-p21.3 in human and 9F1-F2 in mouse, a conserved candidate tumor suppressor locus. Genomics 1998;48:63–70.PubMedCrossrefGoogle Scholar

  • 55.

    Csoka AB, Frost GI, Stern R. The six hyaluronidase-like genes in the human and mouse genomes. Matrix Biol 2001;20:499–508.CrossrefPubMedGoogle Scholar

  • 56.

    Miller KA, Shao M, Martin-DeLeon PA. Hyalp1 in murine sperm function: evidence for unique and overlapping functions with other reproductive hyaluronidases. J Androl 2007;28:67–76.PubMedGoogle Scholar

  • 57.

    Comtesse N, Maldener E, Meese E. Identification of a nuclear variant of MGEA5, a cytoplasmic hyaluronidase and a beta-N-acetylglucosaminidase. Biochem Biophys Res Commun 2001;283:634–40.CrossrefGoogle Scholar

  • 58.

    Lepperdinger G, Mullegger J, Kreil G. Hyal2 – less active, but more versatile? Matrix Biol 2001;20:509–14.CrossrefPubMedGoogle Scholar

  • 59.

    Hofinger ES, Hoechstetter J, Oettl M, Bernhardt G, Buschauer A. Isoenzyme-specific differences in the degradation of hyaluronic acid by mammalian-type hyaluronidases. Glycoconj J 2008;25:101–9.PubMedCrossrefGoogle Scholar

  • 60.

    Natowicz MR, Short MP, Wang Y, Dickersin GR, Gebhardt MC, Rosenthal DI, et al. Clinical and biochemical manifestations of hyaluronidase deficiency. N Engl J Med 1996;335:1029–33.PubMedCrossrefGoogle Scholar

  • 61.

    Lepperdinger G, Strobl B, Kreil G. HYAL2, a human gene expressed in many cells, encodes a lysosomal hyaluronidase with a novel type of specificity. J Biol Chem 1998;273:22466–70.PubMedCrossrefGoogle Scholar

  • 62.

    Rai SK, Duh FM, Vigdorovich V, Danilkovitch-Miagkova A, Lerman MI, Miller AD. Candidate tumor suppressor HYAL2 is a glycosylphosphatidylinositol (GPI)-anchored cell-surface receptor for jaagsiekte sheep retrovirus, the envelope protein of which mediates oncogenic transformation. Proc Natl Acad Sci USA 2001;98:4443–8.CrossrefGoogle Scholar

  • 63.

    Stern R, Jedrzejas MJ. Hyaluronidases: their genomics, structures, and mechanisms of action. Chem Rev 2006;106:818–39.PubMedCrossrefGoogle Scholar

  • 64.

    Chowdhury B, Hemming R, Hombach-Klonisch S, Flamion B, Triggs-Raine B. Murine hyaluronidase 2 deficiency results in extracellular hyaluronan accumulation and severe cardiopulmonary dysfunction. J Biol Chem 2013;288:520–8.CrossrefPubMedGoogle Scholar

  • 65.

    Jadin L, Wu X, Ding H, Frost GI, Onclinx C, Triggs-Raine B, et al. Skeletal and hematological anomalies in HYAL2-deficient mice: a second type of mucopolysaccharidosis IX? FASEB J 2008;22:4316–26.PubMedCrossrefGoogle Scholar

  • 66.

    Csoka AB, Scherer SW, Stern R. Expression analysis of six paralogous human hyaluronidase genes clustered on chromosomes 3p21 and 7q31. Genomics 1999;60:356–61.CrossrefPubMedGoogle Scholar

  • 67.

    Atmuri V, Martin DC, Hemming R, Gutsol A, Byers S, Sahebjam S, et al. Hyaluronidase 3 (HYAL3) knockout mice do not display evidence of hyaluronan accumulation. Matrix Biol 2008;27:653–60.PubMedCrossrefGoogle Scholar

  • 68.

    Cherr GN, Meyers SA, Yudin AI, VandeVoort CA, Myles DG, Primakoff P, et al. The PH-20 protein in cynomolgus macaque spermatozoa: identification of two different forms exhibiting hyaluronidase activity. Dev Biol 1996;175:142–53.PubMedCrossrefGoogle Scholar

  • 69.

    Kimura M, Kim E, Kang W, Yamashita M, Saigo M, Yamazaki T, et al. Functional roles of mouse sperm hyaluronidases, HYAL5 and SPAM1, in fertilization. Biol Reprod 2009;81:939–47.CrossrefPubMedGoogle Scholar

  • 70.

    Deng X, He Y, Martin-Deleon PA. Mouse Spam1 (PH-20): evidence for its expression in the epididymis and for a new category of spermatogenic-expressed genes. J Androl 2000;21:822–32.PubMedGoogle Scholar

  • 71.

    Beech DJ, Madan AK, Deng N. Expression of PH-20 in normal and neoplastic breast tissue. J Surg Res 2002;103:203–7.PubMedCrossrefGoogle Scholar

  • 72.

    Zhang H, Martin-DeLeon PA. Mouse Spam1 (PH-20) is a multifunctional protein: evidence for its expression in the female reproductive tract. Biol Reprod 2003;69:446–54.CrossrefPubMedGoogle Scholar

  • 73.

    Madan AK, Yu K, Dhurandhar N, Cullinane C, Pang Y, Beech DJ. Association of hyaluronidase and breast adenocarcinoma invasiveness. Oncol Rep 1999;6:607–9.PubMedGoogle Scholar

  • 74.

    Kaneiwa T, Mizumoto S, Sugahara K, Yamada S. Identification of human hyaluronidase-4 as a novel chondroitin sulfate hydrolase that preferentially cleaves the galactosaminidic linkage in the trisulfated tetrasaccharide sequence. Glycobiology 2010;20:300–9.PubMedCrossrefGoogle Scholar

  • 75.

    Bourguignon LY, Singleton PA, Diedrich F, Stern R, Gilad E. CD44 interaction with Na+-H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion. J Biol Chem 2004;279:26991–7007.PubMedCrossrefGoogle Scholar

  • 76.

    Stern R. Hyaluronidases in cancer biology. In: Stern R, editor. Hyaluronan in cancer biology. 1st ed. San Diego, CA, USA: Academic Press, 2008:207–20.Google Scholar

  • 77.

    Chao KL, Muthukumar L, Herzberg O. Structure of human hyaluronidase-1, a hyaluronan hydrolyzing enzyme involved in tumor growth and angiogenesis. Biochemistry 2007;46:6911–20.PubMedCrossrefGoogle Scholar

  • 78.

    Jedrzejas MJ, Stern R. Structures of vertebrate hyaluronidases and their unique enzymatic mechanism of hydrolysis. Proteins 2005;61:227–38.PubMedCrossrefGoogle Scholar

  • 79.

    Markovic-Housley Z, Miglierini G, Soldatova L, Rizkallah PJ, Muller U, Schirmer T. Crystal structure of hyaluronidase, a major allergen of bee venom. Structure 2000;8:1025–35.CrossrefGoogle Scholar

  • 80.

    Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B. CD44 is the principal cell surface receptor for hyaluronate. Cell 1990;61:1303–13.PubMedCrossrefGoogle Scholar

  • 81.

    Teriete P, Banerji S, Noble M, Blundell CD, Wright AJ, Pickford AR, et al. Structure of the regulatory hyaluronan binding domain in the inflammatory leukocyte homing receptor CD44. Mol Cell 2004;13:483–96.CrossrefPubMedGoogle Scholar

  • 82.

    Banerji S, Wright AJ, Noble M, Mahoney DJ, Campbell ID, Day AJ, et al. Structures of the Cd44-hyaluronan complex provide insight into a fundamental carbohydrate-protein interaction. Nat Struct Mol Biol 2007;14:234–9.PubMedCrossrefGoogle Scholar

  • 83.

    Vuorio J, Vattulainen I, Martinez-Seara H. Atomistic fingerprint of hyaluronan-CD44 binding. PLoS Comput Biol 2017;13:e1005663.CrossrefPubMedGoogle Scholar

  • 84.

    Naor D, Sionov RV, Ish-Shalom D. CD44: structure, function, and association with the malignant process. Adv Cancer Res 1997;71:241–319.PubMedCrossrefGoogle Scholar

  • 85.

    Noble PW. Hyaluronan and its catabolic products in tissue injury and repair. Matrix Biol 2002;21:25–9.CrossrefPubMedGoogle Scholar

  • 86.

    Gao F, Yang CX, Mo W, Liu YW, He YQ. Hyaluronan oligosaccharides are potential stimulators to angiogenesis via RHAMM mediated signal pathway in wound healing. Clin Invest Med 2008;31:E106–16.PubMedCrossrefGoogle Scholar

  • 87.

    Wang YZ, Cao ML, Liu YW, He YQ, Yang CX, Gao F. CD44 mediates oligosaccharides of hyaluronan-induced proliferation, tube formation and signal transduction in endothelial cells. Exp Biol Med (Maywood) 2011;236:84–90.CrossrefPubMedGoogle Scholar

  • 88.

    Termeer CC, Hennies J, Voith U, Ahrens T, Weiss JM, Prehm P, et al. Oligosaccharides of hyaluronan are potent activators of dendritic cells. J Immunol 2000;165:1863–70.CrossrefPubMedGoogle Scholar

  • 89.

    Yang C, Cao M, Liu H, He Y, Xu J, Du Y, et al. The high and low molecular weight forms of hyaluronan have distinct effects on CD44 clustering. J Biol Chem 2012;287:43094–107.PubMedCrossrefGoogle Scholar

  • 90.

    Slomiany MG, Dai L, Bomar PA, Knackstedt TJ, Kranc DA, Tolliver L, et al. Abrogating drug resistance in malignant peripheral nerve sheath tumors by disrupting hyaluronan-CD44 interactions with small hyaluronan oligosaccharides. Cancer Res 2009;69:4992–8.PubMedCrossrefGoogle Scholar

  • 91.

    Khaldoyanidi S, Moll J, Karakhanova S, Herrlich P, Ponta H. Hyaluronate-enhanced hematopoiesis: two different receptors trigger the release of interleukin-1beta and interleukin-6 from bone marrow macrophages. Blood 1999;94:940–9.PubMedGoogle Scholar

  • 92.

    Jiang D, Liang J, Fan J, Yu S, Chen S, Luo Y, et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 2005;11:1173–9.PubMedCrossrefGoogle Scholar

  • 93.

    Liang J, Jiang D, Griffith J, Yu S, Fan J, Zhao X, et al. CD44 is a negative regulator of acute pulmonary inflammation and lipopolysaccharide-TLR signaling in mouse macrophages. J Immunol 2007;178:2469–75.CrossrefPubMedGoogle Scholar

  • 94.

    Bourguignon LY, Gilad E, Brightman A, Diedrich F, Singleton P. Hyaluronan-CD44 interaction with leukemia-associated RhoGEF and epidermal growth factor receptor promotes Rho/Ras co-activation, phospholipase C epsilon-Ca2+ signaling, and cytoskeleton modification in head and neck squamous cell carcinoma cells. J Biol Chem 2006;281:14026–40.CrossrefPubMedGoogle Scholar

  • 95.

    Bourguignon LY, Singleton PA, Zhu H, Zhou B. Hyaluronan promotes signaling interaction between CD44 and the transforming growth factor beta receptor I in metastatic breast tumor cells. J Biol Chem 2002;277:39703–12.PubMedCrossrefGoogle Scholar

  • 96.

    Sherman L, Sleeman J, Herrlich P, Ponta H. Hyaluronate receptors: key players in growth, differentiation, migration and tumor progression. Curr Opin Cell Biol 1994;6:726–33.PubMedCrossrefGoogle Scholar

  • 97.

    Misra S, Hascall VC, Markwald RR, Ghatak S. Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer. Front Immunol 2015;6:201. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25999946.PubMed

  • 98.

    Hardwick C. Molecular cloning of a novel hyaluronan receptor that mediates tumor cell motility [published erratum appears in J Cell Biol 1992 Aug;118(3):753]. J Cell Biol 1992;117:1343–50.CrossrefGoogle Scholar

  • 99.

    Toole BP. Hyaluronan in morphogenesis. Semin Cell Dev Biol 2001;12:79–87.PubMedCrossrefGoogle Scholar

  • 100.

    Turley EA, Noble PW, Bourguignon LY. Signaling properties of hyaluronan receptors. J Biol Chem 2002;277:4589–92.CrossrefPubMedGoogle Scholar

  • 101.

    Toole BP. Hyaluronan in morphogenesis. J Intern Med 1997;242:35–40.PubMedCrossrefGoogle Scholar

  • 102.

    Sugahara KN. Hyaluronan fragments: informational polymers commandeered by cancers. In: Stern R, editor. Hyaluronan in cancer biology. San Diego, CA, USA: Academic Press, 2009:221–54.Google Scholar

  • 103.

    Nagy JI, Hossain MZ, Lynn BD, Curpen GE, Yang S, Turley EA. Increased connexin-43 and gap junctional communication correlate with altered phenotypic characteristics of cells overexpressing the receptor for hyaluronic acid-mediated motility. Cell Growth Differ 1996;7:745–51.PubMedGoogle Scholar

  • 104.

    Gares SL, Pilarski LM. Beta1-integrins control spontaneous adhesion and motility of human progenitor thymocytes and regulate differentiation-dependent expression of the receptor for hyaluronan-mediated motility. Scand J Immunol 1999;50:626–34.CrossrefPubMedGoogle Scholar

  • 105.

    Hall CL, Yang B, Yang X, Zhang S, Turley M, Samuel S, et al. Overexpression of the hyaluronan receptor RHAMM is transforming and is also required for H-ras transformation. Cell 1995;82:19–28.PubMedCrossrefGoogle Scholar

  • 106.

    Hall CL, Wang C, Lange LA, Turley EA. Hyaluronan and the hyaluronan receptor RHAMM promote focal adhesion turnover and transient tyrosine kinase activity. J Cell Biol 1994;126:575–88.CrossrefPubMedGoogle Scholar

  • 107.

    Kouvidi K, Berdiaki A, Nikitovic D, Katonis P, Afratis N, Hascall VC, et al. Role of receptor for hyaluronic acid-mediated motility (RHAMM) in low molecular weight hyaluronan (LMWHA)-mediated fibrosarcoma cell adhesion. J Biol Chem 2011;286:38509–20.CrossrefPubMedGoogle Scholar

  • 108.

    Savani RC, Cao G, Pooler PM, Zaman A, Zhou Z, DeLisser HM. Differential involvement of the hyaluronan (HA) receptors CD44 and receptor for HA-mediated motility in endothelial cell function and angiogenesis. J Biol Chem 2001;276:36770–8.CrossrefPubMedGoogle Scholar

  • 109.

    Banerji S, Ni J, Wang SX, Clasper S, Su J, Tammi R, et al. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol 1999;144:789–801.PubMedCrossrefGoogle Scholar

  • 110.

    Prevo R, Banerji S, Ferguson DJ, Clasper S, Jackson DG. Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium. J Biol Chem 2001;276:19420–30.PubMedCrossrefGoogle Scholar

  • 111.

    Jang JY, Koh YJ, Lee SH, Lee J, Kim KH, Kim D, et al. Conditional ablation of LYVE-1+ cells unveils defensive roles of lymphatic vessels in intestine and lymph nodes. Blood 2013;122:2151–61.PubMedCrossrefGoogle Scholar

  • 112.

    Huang SS, Liu IH, Smith T, Shah MR, Johnson FE, Huang JS. CRSBP-1/LYVE-l-null mice exhibit identifiable morphological and functional alterations of lymphatic capillary vessels. FEBS Lett 2006;580:6259–68.PubMedCrossrefGoogle Scholar

  • 113.

    Schaefer L, Schaefer RM. Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res 2010;339:237–46.PubMedCrossrefGoogle Scholar

  • 114.

    Wu YJ, La Pierre DP, Wu J, Yee AJ, Yang BB. The interaction of versican with its binding partners. Cell Res 2005;15:483–94.CrossrefPubMedGoogle Scholar

  • 115.

    Wight TN. Arterial remodeling in vascular disease: a key role for hyaluronan and versican. Front Biosci 2008;13:4933–7.PubMedGoogle Scholar

  • 116.

    Roughley PJ. The structure and function of cartilage proteoglycans. Eur Cell Mater 2006;12:92–101.CrossrefPubMedGoogle Scholar

  • 117.

    Jaworski DM, Kelly GM, Hockfield S. Intracranial injury acutely induces the expression of the secreted isoform of the CNS-specific hyaluronan-binding protein BEHAB/brevican. Exp Neurol 1999;157:327–37.PubMedCrossrefGoogle Scholar

  • 118.

    Deb TB, Datta K. Molecular cloning of human fibroblast hyaluronic acid-binding protein confirms its identity with P-32, a protein co-purified with splicing factor SF2. Hyaluronic acid-binding protein as P-32 protein, co-purified with splicing factor SF2. J Biol Chem 1996;271:2206–12.PubMedCrossrefGoogle Scholar

  • 119.

    Ghosh I, Chattopadhaya R, Kumar V, Chakravarty BN, Datta K. Hyaluronan binding protein-1: a modulator of sperm-oocyte interaction. Soc Reprod Fertil Suppl 2007;63:539–43.PubMedGoogle Scholar

  • 120.

    Zhou B, Oka JA, Singh A, Weigel PH. Purification and subunit characterization of the rat liver endocytic hyaluronan receptor. J Biol Chem 1999;274:33831–4.PubMedCrossrefGoogle Scholar

  • 121.

    Harris EN, Weigel JA, Weigel PH. The human hyaluronan receptor for endocytosis (HARE/Stabilin-2) is a systemic clearance receptor for heparin. J Biol Chem 2008;283:17341–50.PubMedCrossrefGoogle Scholar

  • 122.

    Hirose Y, Saijou E, Sugano Y, Takeshita F, Nishimura S, Nonaka H, et al. Inhibition of Stabilin-2 elevates circulating hyaluronic acid levels and prevents tumor metastasis. Proc Natl Acad Sci USA 2012;109:4263–8.CrossrefGoogle Scholar

  • 123.

    Huang L, Yoneda M, Kimata K. A serum-derived hyaluronan-associated protein (SHAP) is the heavy chain of the inter alpha-trypsin inhibitor. J Biol Chem 1993;268:26725–30.PubMedGoogle Scholar

  • 124.

    Lee TH, Wisniewski HG, Vilcek J. A novel secretory tumor necrosis factor-inducible protein (TSG-6) is a member of the family of hyaluronate binding proteins, closely related to the adhesion receptor CD44. J Cell Biol 1992;116:545–57.PubMedCrossrefGoogle Scholar

  • 125.

    Lauer ME, Cheng G, Swaidani S, Aronica MA, Weigel PH, Hascall VC. Tumor necrosis factor-stimulated gene-6 (TSG-6) amplifies hyaluronan synthesis by airway smooth muscle cells. J Biol Chem 2013;288:423–31.PubMedCrossrefGoogle Scholar

  • 126.

    Yoshida H, Nagaoka A, Kusaka-Kikushima A, Tobiishi M, Kawabata K, Sayo T, et al. KIAA1199, a deafness gene of unknown function, is a new hyaluronan binding protein involved in hyaluronan depolymerization. Proc Natl Acad Sci USA 2013;110:5612–7.CrossrefGoogle Scholar

  • 127.

    Evensen NA, Kuscu C, Nguyen HL, Zarrabi K, Dufour A, Kadam P, et al. Unraveling the role of KIAA1199, a novel endoplasmic reticulum protein, in cancer cell migration. J Natl Cancer Inst 2013;105:1402–16.PubMedCrossrefGoogle Scholar

  • 128.

    Shostak K, Zhang X, Hubert P, Goktuna SI, Jiang Z, Klevernic I, et al. NF-kappaB-induced KIAA1199 promotes survival through EGFR signalling. Nat Commun 2014;5:5232.CrossrefPubMedGoogle Scholar

  • 129.

    Brecht M, Mayer U, Schlosser E, Prehm P. Increased hyaluronate synthesis is required for fibroblast detachment and mitosis. Biochem J 1986;239:445–50.CrossrefPubMedGoogle Scholar

  • 130.

    Turley EA, Bowman P, Kytryk MA. Effects of hyaluronate and hyaluronate binding proteins on cell motile and contact behaviour. J Cell Sci 1985;78:133–45.PubMedGoogle Scholar

  • 131.

    Heldin P, Pertoft H. Synthesis and assembly of the hyaluronan-containing coats around normal human mesothelial cells. Exp Cell Res 1993;208:422–9.CrossrefPubMedGoogle Scholar

  • 132.

    Knudson CB, Knudson W. Hyaluronan-binding proteins in development, tissue homeostasis, and disease. FASEB J 1993;7:1233–41.CrossrefPubMedGoogle Scholar

  • 133.

    Ozzello L, Lasfargues EY, Murray MR. Growth-promoting activity of acid mucopolysaccharides on a strain of human mammary carcinoma cells. Cancer Res 1960;20:600–4.PubMedGoogle Scholar

  • 134.

    Camenisch TD, Schroeder JA, Bradley J, Klewer SE, McDonald JA. Heart-valve mesenchyme formation is dependent on hyaluronan-augmented activation of ErbB2-ErbB3 receptors. Nat Med 2002;8:850–5.CrossrefPubMedGoogle Scholar

  • 135.

    Li Y, Toole BP, Dealy CN, Kosher RA. Hyaluronan in limb morphogenesis. Dev Biol 2007;305:411–20.PubMedCrossrefGoogle Scholar

  • 136.

    Matsumoto K, Li Y, Jakuba C, Sugiyama Y, Sayo T, Okuno M, et al. Conditional inactivation of Has2 reveals a crucial role for hyaluronan in skeletal growth, patterning, chondrocyte maturation and joint formation in the developing limb. Development 2009;136:2825–35.PubMedCrossrefGoogle Scholar

  • 137.

    Liu J, Li Q, Kuehn MR, Litingtung Y, Vokes SA, Chiang C. Sonic hedgehog signaling directly targets hyaluronic acid synthase 2, an essential regulator of phalangeal joint patterning. Dev Biol 2013;375:160–71.CrossrefPubMedGoogle Scholar

  • 138.

    Riehl TE, Ee X, Stenson WF. Hyaluronic acid regulates normal intestinal and colonic growth in mice. Am J Physiol Gastrointest Liver Physiol 2012;303:G377–88.CrossrefPubMedGoogle Scholar

  • 139.

    Goncharova V, Serobyan N, Iizuka S, Schraufstatter I, de Ridder A, Povaliy T, et al. Hyaluronan expressed by the hematopoietic microenvironment is required for bone marrow hematopoiesis. J Biol Chem 2012;287:25419–33.PubMedCrossrefGoogle Scholar

  • 140.

    Gao F, Liu Y, He Y, Yang C, Wang Y, Shi X, et al. Hyaluronan oligosaccharides promote excisional wound healing through enhanced angiogenesis. Matrix Biol 2010;29:107–16.PubMedCrossrefGoogle Scholar

  • 141.

    Meran S, Thomas DW, Stephens P, Enoch S, Martin J, Steadman R, et al. Hyaluronan facilitates transforming growth factor-beta1-mediated fibroblast proliferation. J Biol Chem 2008;283:6530–45.PubMedCrossrefGoogle Scholar

  • 142.

    Kozlova I, Ruusala A, Voytyuk O, Skandalis SS, Heldin P. IQGAP1 regulates hyaluronan-mediated fibroblast motility and proliferation. Cell Signal 2012;24:1856–62.CrossrefPubMedGoogle Scholar

  • 143.

    Kavalkovich KW, Boynton RE, Murphy JM, Barry F. Chondrogenic differentiation of human mesenchymal stem cells within an alginate layer culture system. In Vitro Cell Dev-An 2002;38:457–66.CrossrefGoogle Scholar

  • 144.

    Jenkins RH, Thomas GJ, Williams JD, Steadman R. Myofibroblastic differentiation leads to hyaluronan accumulation through reduced hyaluronan turnover. J Biol Chem 2004;279:41453–60.PubMedCrossrefGoogle Scholar

  • 145.

    Takahashi Y, Li L, Kamiryo M, Asteriou T, Moustakas A, Yamashita H, et al. Hyaluronan fragments induce endothelial cell differentiation in a CD44- and CXCL1/GRO1-dependent manner. J Biol Chem 2005;280:24195–204.CrossrefGoogle Scholar

  • 146.

    Iocono JA, Bisignani GJ, Krummel TM, Ehrlich HP. Inhibiting the differentiation of myocardiocytes by hyaluronic acid. J Surg Res 1998;76:111–6.CrossrefPubMedGoogle Scholar

  • 147.

    Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2006;7:131–42.PubMedCrossrefGoogle Scholar

  • 148.

    Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res 2009;19:156–72.CrossrefPubMedGoogle Scholar

  • 149.

    Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 2014;15:178–96.CrossrefPubMedGoogle Scholar

  • 150.

    Markwald RR, Fitzharris TP, Bank H, Bernanke DH. Structural analyses on the matrical organization of glycosaminoglycans in developing endocardial cushions. Dev Biol 1978;62:292–316.PubMedCrossrefGoogle Scholar

  • 151.

    Morris-Wiman J, Brinkley L. Rapid changes in the extracellular matrix accompany in vitro palatal shelf remodelling. Anat Embryol (Berl) 1993;188:75–85.PubMedGoogle Scholar

  • 152.

    Zoltan-Jones A, Huang L, Ghatak S, Toole BP. Elevated hyaluronan production induces mesenchymal and transformed properties in epithelial cells. J Biol Chem 2003;278:45801–10.PubMedCrossrefGoogle Scholar

  • 153.

    Zhang Y, Thant AA, Machida K, Ichigotani Y, Naito Y, Hiraiwa Y, et al. Hyaluronan-CD44s signaling regulates matrix metalloproteinase-2 secretion in a human lung carcinoma cell line QG90. Cancer Res 2002;62:3962–5.Google Scholar

  • 154.

    Ghatak S, Misra S, Toole BP. Hyaluronan constitutively regulates ErbB2 phosphorylation and signaling complex formation in carcinoma cells. J Biol Chem 2005;280:8875–83.PubMedCrossrefGoogle Scholar

  • 155.

    DeSouza LV, Matta A, Karim Z, Mukherjee J, Wang XS, Krakovska O, et al. Role of moesin in hyaluronan induced cell migration in glioblastoma multiforme. Mol Cancer 2013;12:74.PubMedCrossrefGoogle Scholar

  • 156.

    Itano N, Sawai T, Miyaishi O, Kimata K. Relationship between hyaluronan production and metastatic potential of mouse mammary carcinoma cells. Cancer Res 1999;59:2499–504.PubMedGoogle Scholar

  • 157.

    Chanmee T, Ontong P, Itano N. Hyaluronan: a modulator of the tumor microenvironment. Cancer Lett 2016;375:20–30.CrossrefPubMedGoogle Scholar

About the article

Corresponding author: Dr. Prasanth S. Ariyannur, Department of Biochemistry, School of Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, AIMS Ponekkara Post, Kochi 682041, India, Phone: +91-484-285-2250


Received: 2017-10-27

Accepted: 2018-01-08

Published Online: 2018-02-14

Published in Print: 2018-03-28


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.


Citation Information: Drug Metabolism and Personalized Therapy, Volume 33, Issue 1, Pages 15–32, ISSN (Online) 2363-8915, ISSN (Print) 2363-8907, DOI: https://doi.org/10.1515/dmpt-2017-0031.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in