THE EXISTENCE OF QUASI REGULAR AND BI-REGULAR SELF-COMPLEMENTARY 3-UNIFORM HYPERGRAPHS

LATA N. KAMBLE

Department of Mathematics
Abasaheb Garware College,
Karve Road, Pune-411004

e-mail: lata7429@gmail.com

CHARUSHEELA M. DESHPANDE

AND

BHAGYASHREE Y. BAM

Department of Mathematics
College of Engineering Pune
Pune-411006

e-mail: dcm.maths@coep.ac.in

Abstract

A k-uniform hypergraph $H = (V; E)$ is called self-complementary if there is a permutation $\sigma : V \to V$, called a complementing permutation, such that for every k-subset e of V, $e \in E$ if and only if $\sigma(e) \notin E$. In other words, H is isomorphic with $H' = (V; V^{(k)} - E)$. In this paper we define a bi-regular hypergraph and prove that there exists a bi-regular self-complementary 3-uniform hypergraph on n vertices if and only if n is congruent to 0 or 2 modulo 4. We also prove that there exists a quasi regular self-complementary 3-uniform hypergraph on n vertices if and only if n is congruent to 0 modulo 4.

Keywords: self-complementary hypergraph, uniform hypergraph, regular hypergraph, quasi regular hypergraph, bi-regular hypergraph.

2010 Mathematics Subject Classification: 05C65.
1. Introduction

Sachs [8] and Ringel [7] proved that a graph of order \(n \) is self-complementary if and only if \(n \) is congruent to 0 or 1 modulo 4. They also proved that a regular graph of order \(n \) is self-complementary if and only if \(n \) is congruent to 1 modulo 4.

Szymański and Wojda [9] proved that “A self-complementary 3-uniform hypergraph of order \(n \) exists if and only if \(n \) is congruent to 0 or 1 or 2 modulo 4.”

Potočnik, and Šajana [6] raised the following question strengthening Hartman’s conjecture [2, 3] about the existence of large sets of (not necessarily isomorphic) designs.

Question [6]. Is it true that for every triple of integers \(t < k < n \) such that \(\binom{n-i}{k-i} \) is even for all \(i = 0, \ldots, t \), there exists a self-complementary \(t \)-subset-regular \(k \)-uniform hypergraph of order \(n \)?

The answer to the above question is affirmative for \(k = 2 \) and \(t = 1 \) (see [8]). The answer was proved affirmative also for the case \(k = 3 \) and \(t = 1 \) (see [6]). And in [4] it is shown that the answer to the question above is affirmative for the remaining case of 3-uniform hypergraphs, namely for the case \(k = 3, t = 2 \).

In this paper we digress a little from the case \(k = 3 \) and \(t = 1 \) to prove that a quasi-regular self-complementary 3-uniform hypergraph of order \(n \) exists if and only if \(n \geq 4 \) and \(n \) is congruent to 0 modulo 4, and a bi-regular self-complementary 3-uniform hypergraph of order \(n \) exists if and only if \(n \) is congruent to 0 or 2 modulo 4.

2. Preliminary Definitions and Results

Definition (k-uniform hypergraph). Let \(V \) be a finite set with \(n \) vertices. By \(V^{(k)} \) we denote the set of all \(k \)-subsets of \(V \). A \(k \)-uniform hypergraph is a pair \(H = (V; E) \), where \(E \subset V^{(k)} \). \(V \) is called the vertex set, and \(E \) the edge set of \(H \).

Definition (Degree of a vertex). The degree of a vertex \(v \) in a hypergraph \(H \) is the number of edges containing the vertex \(v \) and is denoted as \(d_H(v) \).

Definition (Regular hypergraph). A hypergraph \(H \) is said to be regular if all vertices have the same degree.

Definition (Bi-regular hypergraph). A hypergraph \(H \) is said to be bi-regular if there exist two distinct positive integers \(d_1 \) and \(d_2 \) such that the degree of each vertex is either \(d_1 \) or \(d_2 \).

Definition (Quasi regular hypergraph). A hypergraph \(H \) is said to be quasi regular if the degree of each vertex is either \(r \) or \(r - 1 \) for some positive integer \(r \).
It is clear that every quasi regular hypergraph is bi-regular.

Definition (Self-complementary k-uniform hypergraph). A k-uniform hypergraph $H = (V; E)$ is called self-complementary if there exists a permutation $\sigma : V \to V$, called a complementing permutation, such that for every k-subset e of V, $e \in E$ if and only if $\sigma(e) \notin E$.

In other words, H is isomorphic to $H' = (V; V^{(k)} - E)$.

Definition (Tournament). A tournament is a directed graph (V, A) with the property that for all pairs of distinct vertices $u, v \in V$, either $(u, v) \in A$ or $(v, u) \in A$.

Further, a tournament is said to be self-converse if there exists a bijection $\varphi : V \to V$ such that for all distinct $u, v \in V$, we have $(u, v) \in A$ if and only if $(\varphi(u), \varphi(v)) \notin A$.

Kocay [5] proved the following result on complementing permutations of self-complementary 3-uniform hypergraphs.

Proposition 1 [5]. A permutation σ is a complementing permutation of a self-complementary 3-uniform hypergraph if and only if

(i) every cycle of σ has even length, or
(ii) σ has 1 or 2 fixed points, and the length of all other cycles is a multiple of 4.

Szymański and Wojda [9] proved the following result on the order of a self-complementary uniform hypergraph.

Proposition 2 [9]. Let k and n be positive integers, $k \leq n$. A k-uniform self-complementary hypergraph of order n exists if and only if $\binom{n}{k}$ is even.

Remark 3. For 3-uniform self-complementary hypergraph the Proposition 2 can be stated as “A 3-uniform self-complementary hypergraph of order n exists if and only if $n \equiv 0 \text{ or } 1 \text{ or } 2 \pmod{4}$.

The following remark is obvious and hence is stated without proof.

Remark 4. If H is a self-complementary 3-uniform hypergraph of order n with complementing permutation σ, then

(i) for any vertex v in H, $d_H(v) + d_H(\sigma(v)) = \binom{n-1}{2}$,
(ii) for any vertex v in H, $d_H(v) = d_H(\sigma^2(v)) = d_H(\sigma^4(v)) = \cdots$ and $d_H(\sigma(v)) = d_H(\sigma^3(v)) = d_H(\sigma^5(v)) = \cdots$

Further, if x is a fixed point of σ, then $d_H(x) = \frac{1}{2} \binom{n-1}{2}$.

Lemma 5. If H is a self-complementary 3-uniform hypergraph on n vertices, where n is congruent to 1 modulo 4 and $n \geq 5$, then H cannot be bi-regular.
Proof. Let H be a self-complementary 3-uniform hypergraph on n vertices where n is congruent to 1 modulo 4, i.e., $n = 4m + 1$, $m \in \mathbb{N}$. Let $\sigma : V(H) \to V(H)$ be its complementing permutation. By Proposition 1, σ necessarily has one fixed point, say x.

From Remark 4(ii) $d_H(x) = m(4m - 1)$. For H to be bi-regular either $d_1 = m(4m - 1)$ or $d_2 = m(4m - 1)$. Without loss of generality let $d_1 = m(4m - 1)$. Since there are only two types of degrees d_1 and d_2, for any other vertex v, $d_v(H)$ is d_1 or d_2. By Remark 4(i) we have, $d_1 + d_2 = \frac{4m(4m - 1)}{2}$ which gives $d_2 = 2m(4m - 1) - m(4m - 1) = m(4m - 1) = d_1$. Hence H cannot be bi-regular.

3. Existence of a Quasi Regular and Bi-Regular Self-Complementary 3-Uniform Hypergraph

The following theorem gives a necessary and sufficient condition on the order n of a quasi regular self-complementary 3-uniform hypergraph. This theorem actually gives a construction of a quasi regular self-complementary 3-uniform hypergraph of desirable order.

Theorem 6. There exists a quasi regular self-complementary 3-uniform hypergraph of order n if and only if $n \geq 4$ and $n \equiv 0 \pmod{4}$.

Proof. Let H be a quasi regular self-complementary 3-uniform hypergraph on n vertices such that degree of each vertex is either r or $r - 1$ for some positive integer r.

![Figure 1. The types of triples making up the edge set of a quasi regular self-complementary 3-uniform hypergraph on $n = 4m$ vertices.](image)

Let $\sigma : V(H) \to V(H)$ be a complementing permutation of H. By Proposition 1, σ has (i) every cycle of even length, or (ii) 1 or 2 fixed points and the
length of all the other cycles is a multiple of 4. By Remark 3, we know that a self-complementary 3-uniform hypergraph exists if and only if \(n \equiv 0 \pmod{4} \) or \(n \equiv 1 \pmod{4} \), or \(n \equiv 2 \pmod{4} \). Lemma 5 shows that \(n \) is not congruent to 1 modulo 4.

If \(n \equiv 2 \pmod{4} \), i.e., \(n = 4m + 2 \), \(m \in \mathbb{N} \), then either \(\sigma \) has 2 fixed points and the length of all other cycles is a multiple of 4 or \(\sigma \) has all cycles of even length.

If \(\sigma \) has 2 fixed points, then both must have the same degree and for some other vertex \(v \), \(d_H(v) \neq d_H(\sigma(v)) \) otherwise \(H \) will be regular. Since there are only two possible degrees \(r \) and \(r - 1 \), from Remark 4 we get that \(r + r - 1 = (n-2) = 2m(4m + 1) \), i.e., \(2r - 1 = 2m(4m + 1) \), a contradiction.

If \(\sigma \) has all cycles of even length, then again we get the same contradiction.

Hence, if there exists a quasi regular self-complementary 3-uniform hypergraph on \(n \) vertices, then \(n \equiv 0 \pmod{4} \).

For the converse, we construct a quasi regular self-complementary 3-uniform hypergraph on \(n \) vertices where \(n \equiv 0 \pmod{4} \).

Let \(m \) be a positive integer such that \(n = 4m \) and \(V = V_0 \cup V_1 \cup V_2 \cup V_3 \), where \(V_i = \{v_j^i : j \in \mathbb{Z}_m\}, i \in \mathbb{Z}_4 \).

For every pairwise distinct triple \(i, i', i'' \in \mathbb{Z}_4 \) we define the following subsets of \(V(3) \):

\[
E_i = V_i^{(3)},
E_{(i,i')} = \{\{v^i_{j_1}, v^i_{j_2}, v^{i'}_{j_2}\} : j_1, j_2 \in \mathbb{Z}_m, j_1 \neq j_2\},
E_{(i,i',i'')} = \{\{v^i_{j_1}, v^{i'}_{j_2}, v^{i''}_{j_2}\} : j_1, j_2, j_2 \in \mathbb{Z}_m\}.
\]

Let us denote

\[
E = E_0 \cup E_1 \cup E_{(2,1)} \cup E_{(2,3)} \cup E_{(3,0)} \cup E_{(3,2)} \cup E_{(1,3)} \cup E_{(0,2)} \cup E_{(0,1,3)} \cup E_{(0,1,2)}.
\]

Let \(H \) be the 3-uniform hypergraph with vertex set \(V \) and edge set \(E \). Figure 1 explains the construction of the hypergraph \(H \). We show that \(H \) is quasi regular. Take any vertex \(v^i_j \).

Case (i) If \(i \in \{0, 1\} \), then the vertex \(v^i_j \) lies in \(\binom{m-1}{2} \) triples of \(E_i \), \((m-1)m \) triples of \(E_{(i,i')} \), \(\binom{m}{2} \) triples of \(E_{(i,i',i'')} \), and \(2m^2 \) triples of \(E_{(i,i',i'')} \). Hence, for every vertex \(v^i_j \) in \(H \) with \(i \in \{0, 1\} \), we have

\[
d_H(v^i_j) = \binom{m-1}{2} + \binom{m}{2} + m(m-1) + 2m^2 = 4m^2 - 3m + 1.
\]

Case (ii) If \(i \in \{2, 3\} \), then the vertex \(v^i_j \) lies in \(2(m-1)m \) triples of \(E_{(i,i')} \), \(2\binom{m}{2} \) triples of \(E_{(i,i',i'')} \), and \(m^2 \) triples of \(E_{(i,i',i'')} \). Hence for every vertex \(v^i_j \) in \(H \) with \(i \in \{2, 3\} \), we obtain
Thus H is quasi regular with degrees $r = 4m^2 - 3m + 1$ and $r - 1 = 4m^2 - 3m$.

To prove that H is self-complementary, we define a permutation $\phi : V \rightarrow V$ by $\phi(v_0^j) = v_1^j$, $\phi(v_1^j) = v_2^j$, $\phi(v_2^j) = v_3^j$ and $\phi(v_3^j) = v_0^j$, for all $j \in \mathbb{Z}_m$. Then ϕ is a complementing permutation of H and H is self-complementary.

In the next theorem we give a necessary and sufficient condition on the order n of a bi-regular 3-uniform hypergraph to be self-complementary. In this theorem we shall use the following result by Alspach [1] on existence of a regular self-converse tournament.

Theorem 7 (Alspach [1]). There exists a regular self-converse tournament with n vertices for every odd integer n.

Theorem 8. There exists a bi-regular self-complementary 3-uniform hypergraph of order n if and only if either $n \equiv 0 \ (\mod \ 4)$ or $n \equiv 2 \ (\mod \ 4)$ and $n \geq 4$.

Proof. Necessity follows from Lemma 5 and Remark 3. Conversely, let $n \equiv 0 \ (\mod \ 4)$. The self-complementary 3-uniform hypergraph constructed in Theorem 6 is quasi regular and hence bi-regular.

Let $n \equiv 2 \ (\mod \ 4)$. Then $n = 4m + 2 = 2k$ where $k = 2m + 1$ is odd. Let $V = V_0 \cup V_1$, where $V_i = \{v_i^j : j \in \mathbb{Z}_k\}, i \in \mathbb{Z}_2$. By Theorem 7, there exists a regular self-converse tournament $T = (\mathbb{Z}_k, A)$.

For $i \in \mathbb{Z}_2$, we define the following subsets of $V^{(3)}$:

$E_i = V_i^{(3)}$,

$E_{(i,i+1)} = \{(v_{j_1}^i, v_{j_2}^i, v_{j_1}^{i+1}) : j_1, j_2, j \in \mathbb{Z}_k, j_1, j_2, j \text{ pairwise distinct}\}$,

$E_A = \{(v_{k_1}^i, v_{k_2}^i, v_{k_1}^{i+1}) : (k_1, k_2) \in A, i \in \mathbb{Z}_2\}$.

Let

$E = E_0 \cup E_{(0,1)} \cup E_A$.

Let H be the 3-uniform hypergraph with vertex set V and edge set E. Figure 2 explains the construction of the hypergraph H. We show that H is bi-regular. Let v_j^i be an arbitrary vertex of H.

Case (i) If $i = 0$, then the vertex v_0^j lies in $\binom{k-1}{2}$ triples of E_0, $(k - 1)(k - 2)$ triples of $E_{(0,1)}$ and $\frac{3(k-1)}{2}$ triples of E_A. Hence

$$d_H(v_0^j) = \binom{k-1}{2} + (k - 1)(k - 2) + \frac{3(k-1)}{2} = \frac{3(k-1)^2}{2}.$$
Case (ii) If $i = 1$, then the vertex v_j^1 lies in $\binom{k-1}{2}$ triples of $E_{(0,1)}$, $\frac{3(k-1)}{2}$ triples of E_A. Therefore,

$$d_H(v_j^1) = \binom{k-1}{2} + \frac{3(k-1)}{2} = \frac{k^2 - 1}{2}.$$

![Figure 2. The types of triples making up the edge set of a bi-regular self-complementary 3-uniform hypergraph on $n = 4m + 2$ vertices.](image)

This proves that H is bi-regular with degrees $d_1 = \frac{3(k-1)^2}{2}$ and $d_2 = \frac{k^2 - 1}{2}$.

Let $\varphi : \mathbb{Z}_k \rightarrow \mathbb{Z}_k$ be an arc-reversing mapping of the tournament T; that is, φ is a bijection on \mathbb{Z}_k such that $\varphi(a) \notin A$ for all $a \in A$.

To prove that H is self-complementary, we define a permutation $\phi : V \rightarrow V$ by $\phi(v_j^i) = v_j^{i+1}$ for $i \in \mathbb{Z}_2$ and $j \in \mathbb{Z}_k$. ϕ interchanges the sets E_1 and E_0, and also the sets $E_{(0,1)}$ and $E_{(1,0)}$. Furthermore, for all $(k_1, k_2) \in A$ and $i \in \mathbb{Z}_2$, since φ is arc-reversing, ϕ maps the triple $\{v_{k_1}^i, v_{k_2}^i, v_{k_1}^{i+1}\} \in E_A$ to the triple $\{v_{\varphi(k_1)}^i, v_{\varphi(k_2)}^i, v_{\varphi(k_1)}^{i+1}\} \notin E_A$. It follows that ϕ is a complementing permutation of H and therefore H is self-complementary.

Acknowledgment

We are grateful to the referees for their helpful comments and Professor N.S. Bhave for many helpful discussions.

References

Received 24 November 2014
Revised 1 August 2015
Accepted 1 August 2015