Jump to ContentJump to Main Navigation
Show Summary Details
More options …

DNA Barcodes

Ed. by Mitchell, Andrew

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2299-1077
See all formats and pricing
More options …

Mitochondrial markers for identification and phylogenetic studies in insects – A Review

Surajit De Mandal / Liansangmawii Chhakchhuak / Guruswami Gurusubramanian / Nachimuthu Senthil Kumar
Published Online: 2014-04-24 | DOI: https://doi.org/10.2478/dna-2014-0001

Abstract

Similar morphology and high genetic diversity poses problems in phylogenetic studies of insects. To solve these problems, mitochondrial based markers have been adopted and are increasingly used as molecular markers for phylogenetic studies. Varied markers have been used for different species of insects, viz., markers for 16S r RNA, 12S r RNA, ND (1-6 genes), ATPase and control regions. Among which protein coding gene, CO-1 is found to be best because of its advantage over others whereas, AT rich region of mitochondrial DNA is the least used marker. A recent advanced technology in phylogenetic analysis; namely mitogenomics have greatly improved this research field. This short review attempted to summarize recent studies on the application of various mitochondrial molecular markers for phylogenetic study of insects.

Keywords : insects; mitochondrial marker; molecular phylogeny; CO-1; mitogenomics

References

  • [1] Krauss S., Mitochondria: Structure and Role in Respiration, In Nature Encyclopedia of Life Sciences, New York: Nature Publishing Group, 2001Google Scholar

  • [2] Tuppen H.A., Blakely E.L., Turnbull D.M., Taylor R.W., Mitochondrial DNA mutations and human disease, Biochim.Biophys. Acta., 2010, 1797, 113-128Google Scholar

  • [3] Alexeyev M.F., Ledoux S.P., Wilson G.L., Mitochondrial DNA and aging, Clin. Sci., 2004, 107, 355-364Google Scholar

  • [4] Wang C., Youle R.J., The role of mitochondria in apoptosis, Annu. Rev. Genet., 2009, 43, 95-118CrossrefGoogle Scholar

  • [5] Wilson K., Cahill V., Ballment E., Benzie J., The complete se-quence of the mitochondrial genome of the crustacean Penaeusmondon: are malacostracan crustaceans more closely related to insects than to branchiopods? Mol. Biol. Evol., 2000, 17, 863-874CrossrefGoogle Scholar

  • [6] Salvato P., Simonato M., Battisti A., Negrisolo E., The complete mitochondrial genome of the bag-shelter moth Ochrogaster lunifer (Lepidoptera, Notodontidae), BMC Genomics., 2008, 9, 331CrossrefGoogle Scholar

  • [7] Lewis D.L., Farr C.L., Kaguni L.S., Drosophila melanogaster mitochondrial DNA: completion of the nucleotide sequence and evolutionary comparisons. Insect Mol. Biol., 1995, 4, 263-278CrossrefGoogle Scholar

  • [8] Faure E., Casanova J.P., Comparison of chaetognath mitochondrial genomes and phylogenetical implications, Mitochondrion., 2006, 6, 258-262CrossrefGoogle Scholar

  • [9] Faure E., Delaye L., Tribolo S., Levasseur A., Seligmann H., Barthelemy R., Probable presence of a ubiquitous cryptic mitochondrial gene on the antisense strand of the cytochrome oxidase I gene, Biol. Direct., 2011, 6, 56CrossrefGoogle Scholar

  • [10] Macey J.R., Larson A., Anajeva N.B., Fang Z., Papenfuss T.J., Two novel gene orders and the role of light-strand replication in the rearrangement of the vertebrate mitochondrial genome, Mol.Biol. Evol., 1997, 14, 91-104CrossrefGoogle Scholar

  • [11] Clary D.O., Wolstenholme D.R., The mitochondrial DNA molecular of Drosophila yakuba: nucleotide sequence, gene organization and genetic code, J. Mol. Evol., 1985, 22, 252-271CrossrefGoogle Scholar

  • [12] Thao M.L., Baumann L., Baumann P., Organization of the mitochondrial genomes of whiteflies, aphids, and psyllids (Hemiptera: Sternorrhyncha), BMC Evol. Biol., 2004, 4, 25CrossrefGoogle Scholar

  • [13] Shao R., Barker S.C., The highly rearranged mitochondrial genome of the plague thrips, Thrips imaginis (Insecta: Thysanoptera): convergence of two novel gene boundaries and an extraordinary arrangement of rRNA genes, Mol. Biol. Evol., 2003, 20, 362-70CrossrefGoogle Scholar

  • [14] Cameron S.L., Johnson K.P., Whiting M.F., The mitochondrial genome of the screamer louse Bothriometopus (Phthiraptera: Ischnocera): effects of extensive gene rearrangements on the evolution of the genome, J. Mol. Evol., 2009, 65, 589-604Google Scholar

  • [15] Trautwein M.D., Wiegmann B.M., Beutel R., Kjer K.M., Yeates D.K., Advances in Insect Phylogeny at the Dawn of the Postgenomic Era, Annu. Rev. Ent., 2012, 57, 449-468Google Scholar

  • [16] Arif I.A., Khan H.A., Molecular markers for biodiversity analysis of wildlife animals: a brief review, Anim. Biodivers. Conserv., 2009, 32, 9-17Google Scholar

  • [17] Sahney S., Benton M.J., Falcon-Lang H.J., Rainforest collapse triggered Pennsylvanian tetrapod diversification in Euramerica, Geology, 2010, 38, 1079-1082CrossrefGoogle Scholar

  • [18] Siti-Balkhis A.B., Jamsari A.F.J., Hwai T.S., Yasin Z., Siti-Azizah M.N., Evidence of geographical structuring in the Malaysian Snakehead, Channastriata based on partial segment of the CO1 gene, Biochem. Soc. T., 2006, 34, 520-523Google Scholar

  • [19] Speight M.R., Watt A., Humter M., Ecology of insects: Concepts and application, 2nd Edn, Blackwell Science, London, 2005Google Scholar

  • [20] Price P.W., Denno R.F., Eubanks M.D., Finke D.L., Kaplan I., Insect ecology: behavior, populations and communities.Cambridge University Press. 2011Google Scholar

  • [21] Danks H.V., Arctic Insects as Indicators of Environmental Change, Arctic., 1992, 45, 159-166Google Scholar

  • [22] Fungaro M.H.P., Vieira M.L.C., Pizzirani-Kleiner A.A., Azevedo J.L., Diversity among soil and insect isolates of Metarhizium anisopliae var. anisopliae detected by RAPD, Lett. Appl.Microbiol., 1996, 22, 389-392CrossrefGoogle Scholar

  • [23] Miller K.B., Alarie Y., Wolfe G.W., Whiting, M.F., Association of insect life stages using DNA sequences: the larvae of Philodyte sumbrinus (Motschulsky) (Coleoptera: Dytiscidae), Syst.Entomol., 2003, 30, 499-509Google Scholar

  • [24] Johnson G.D., Paxton J.R., Sutton T.T., Satoh T. P., Sado T., Nishida M., et al., Deep-sea mystery solved: astonishing larval transformations and extreme sexual dimorphism unite three fish families, Biol. Lett., 2009, 5, 235-239CrossrefGoogle Scholar

  • [25] Utsugi J.I.N.B.O., Toshihide K.A.T.O., Motom I.T.O., Current progress in DNA barcoding and future implications for entomology, Entomological Science, 2011,14, 107-124Google Scholar

  • [26] Lio P., Goldman N., Models of Molecular Evolution and Phylogeny, Genome res., 1998, 8, 1233-1244Google Scholar

  • [27] Hall B.G., Phylogenetic Trees Made Easy : A How-To Manual, 2nd edn. Sinauer Associates, Sunderland, 2004Google Scholar

  • [28] Tourasse N.J., Li W.H., Selective Constraints, Amino Acid Composition, and the Rate of Protein Evolution, Mol. Biol. Evol., 2000, 17, 656-664CrossrefGoogle Scholar

  • [29] Sunnucks P., Efficient genetic markers for population biology, Trends Ecol. Evol., 2000,15, 199-203CrossrefGoogle Scholar

  • [30] San M.D., Gower D.G., Zardoya R., Wilkinson M., A hotspot of gene order rearrangement by tandem duplication and random loss in the vertebrate mitochondrial genome, Mol. Biol. Evol., 2006, 23, 227-234Google Scholar

  • [31] Brown W.M., George M., Wilson A.C., Rapid evolution of animal mitochondrial DNA, Proc. Natl. Acad. Sci. U.S.A.,1979, 76(4), 1967-1971CrossrefGoogle Scholar

  • [32] Richly E., Leister D., NUMTs in Sequenced Eukaryotic Genomes, Mol. Biol. Evol., 2004, 21, 1081-1084CrossrefGoogle Scholar

  • [33] Rawlings T.A., Collins T.M., Bieler R., A major mitochondrial gene rearrangement among closely related species, Mol. Biol.Evol., 2001, 18, 1604-1609CrossrefGoogle Scholar

  • [34] Dowton M., Relationships among the cyclostome braconid (Hymenoptera: Braconidae) subfamilies inferred from a mitochondrial tRNA gene rearrangement, Mol. Phylogenet.Evol., 1992, 11, 283-287 Google Scholar

  • [35] Boore J.L., Animal mitochondrial genomes, Nucleic Acids Res., 1999, 27, 1767-1780CrossrefGoogle Scholar

  • [36] Boore J.L., Brown W.M., Big trees from little genomes: mitochondrial gene order as a phylogenetic tool, Curr. Opin.Genetics Dev., 1998, 8, 668-674CrossrefGoogle Scholar

  • [37] Boore J.L, Lavrov D.V., Brown W.M., Gene translocation links insects and crustaceans, Nature, 1998, 392, 667-668Google Scholar

  • [38] Arif I.A., Khan H.A., Bahkali A.H., Homaidan A.A.A., Farhan A.H., Sadoon M.A., et al., DNA marker technology for wildlife conservation, Saudi J. Biol. Sci., 2011, 18, 219-225Google Scholar

  • [39] Khan H.A., Arif I.A., Farhan A.H., Homaidan A.A., Phylogenetic analysis of oryx species using partial sequences of mitochondrial rRNA genes, Genet. Mol. Res., 2008, 7,1150-1155CrossrefGoogle Scholar

  • [40] Hixon J.E., Brown W.M., A Comparison of the Small Ribosomal RNA Genes from the Mitochondrial DNA of the Great Apes and Humans: Sequence, Structure, Evolution, and Phylogenetic Implications, Mol. Biol. Evol., 2013, 3, 1-18Google Scholar

  • [41] Gerber A.S., Loggins R., Kumar S., Dowling T.E., Does non-neutral evolution shape observed patterns of DNA variation in animal mitochondrial genomes? Annu. Rev. Genet., 2001, 35, 539-566CrossrefGoogle Scholar

  • [42] Hickson R.E., Simon C., Cooper A., Spicer G.S., Sullivan J., Penny D., Conserved sequence motifs, alignment, and secondary structure for the third domain of animal 12S rRNA, Mol. Biol. Evol.,1996, 13, 150-169CrossrefGoogle Scholar

  • [43] Merzlyak E., Yurchenko V., Kolesnikov A.A., Alexandrov K., Podlipaev S.A., Maslov, D.A., Diversity and phylogeny of insect trypanosomatids based on small subunit rRNA genes: polyphyly of Leptomonas and Blastocrithidia, J. Eukaryot.Microbiol., 2001, 48, 161-9CrossrefGoogle Scholar

  • [44] Yao D.B., Chi D.F., Wu Q.Y., Li X.C., Jia Yu., Molecular Phylogenetic Relationships of Different Color Forms within Harmonia axyridis Pallas (Coleoptera: Coccinellidae) Based on Sequences of 12S rRNA and 16S rRNA Gene, Adv. Mat. Res., 2011, 183-185, 757-767CrossrefGoogle Scholar

  • [45] Ramírez-Puebla S.T., Rosenblueth M., Chávez- Moreno C.K., Catanho Pereira De Lyra M.C., Tecante A., Martínez-Romero E.M, Molecular Phylogeny of the Genus Dactylopius (Hemiptera: Dactylopiidae) and Identification of the Symbiotic Bacteria, Environ. Entomol., 2010, 39(4), 1178-1183CrossrefGoogle Scholar

  • [46] Kambhampati S., Kjer K.M., Thorne L., Phylogenetic relationship among termite families based on DNA sequence of mitochondrial 16s ribosomal RNA gene, Insect. Mol. Biol.,1996, 5, 229-238CrossrefGoogle Scholar

  • [47] Kambhampati S., A phylogeny of cockroaches and related insects based on DNA sequence of mitochondrial ribosomal RNA genes, Proc. Natl. Acad. Sci. U.S.A., 1995., 92, 2017-2020Google Scholar

  • [48] Whitfield J.B., Cameron S.A., Hierarchical Analysis of Variation in the Mitochondrial 16S rRNA Gene Among Hymenoptera, Mol.Biol. Evol., 1998, 15, 1728-1743CrossrefGoogle Scholar

  • [49] Rao P. N., Rai K.S., Genome evolution in the mosquitoes and other closely related members of superfamily Culicoidea, Heriditas., 1990, 113, 139-144Google Scholar

  • [50] Shouche Y.S., Patole M.S., Sequence analysis of mitochondrial 16S ribosomal RNA gene fragment from seven mosquito species, J. Biosci., 2000, 25, 361-366Google Scholar

  • [51] Ullrich B., Reinhold K., Niehuis O., Misof B., Secondary structure and phylogenetic analysis of the internal transcribed Google Scholar

  • [35] Boore J.L., Animal mitochondrial genomes, Nucleic Acids Res., 1999, 27, 1767-1780CrossrefGoogle Scholar

  • [36] Boore J.L., Brown W.M., Big trees from little genomes: mitochondrial gene order as a phylogenetic tool, Curr. Opin.Genetics Dev., 1998, 8, 668-674CrossrefGoogle Scholar

  • [37] Boore J.L, Lavrov D.V., Brown W.M., Gene translocation links insects and crustaceans, Nature, 1998, 392, 667-668Google Scholar

  • [38] Arif I.A., Khan H.A., Bahkali A.H., Homaidan A.A.A., Farhan A.H., Sadoon M.A., et al., DNA marker technology for wildlife conservation, Saudi J. Biol. Sci., 2011, 18, 219-225Google Scholar

  • [39] Khan H.A., Arif I.A., Farhan A.H., Homaidan A.A., Phylogenetic analysis of oryx species using partial sequences of mitochondrial rRNA genes, Genet. Mol. Res., 2008, 7,1150-1155CrossrefGoogle Scholar

  • [40] Hixon J.E., Brown W.M., A Comparison of the Small Ribosomal RNA Genes from the Mitochondrial DNA of the Great Apes and Humans: Sequence, Structure, Evolution, and Phylogenetic Implications, Mol. Biol. Evol., 2013, 3, 1-18Google Scholar

  • [41] Gerber A.S., Loggins R., Kumar S., Dowling T.E., Does non-neutral evolution shape observed patterns of DNA variation in animal mitochondrial genomes? Annu. Rev. Genet., 2001, 35, 539-566CrossrefGoogle Scholar

  • [42] Hickson R.E., Simon C., Cooper A., Spicer G.S., Sullivan J., Penny D., Conserved sequence motifs, alignment, and secondary structure for the third domain of animal 12S rRNA, Mol. Biol. Evol.,1996, 13, 150-169CrossrefGoogle Scholar

  • [43] Merzlyak E., Yurchenko V., Kolesnikov A.A., Alexandrov K., Podlipaev S.A., Maslov, D.A., Diversity and phylogeny of insect trypanosomatids based on small subunit rRNA genes: polyphyly of Leptomonas and Blastocrithidia, J. Eukaryot.Microbiol., 2001, 48, 161-9CrossrefGoogle Scholar

  • [44] Yao D.B., Chi D.F., Wu Q.Y., Li X.C., Jia Yu., Molecular Phylogenetic Relationships of Different Color Forms within Harmonia axyridis Pallas (Coleoptera: Coccinellidae) Based on Sequences of 12S rRNA and 16S rRNA Gene, Adv. Mat. Res., 2011, 183-185, 757-767CrossrefGoogle Scholar

  • [45] Ramírez-Puebla S.T., Rosenblueth M., Chávez- Moreno C.K., Catanho Pereira De Lyra M.C., Tecante A., Martínez-Romero E.M, Molecular Phylogeny of the Genus Dactylopius (Hemiptera: Dactylopiidae) and Identification of the Symbiotic Bacteria, Environ. Entomol., 2010, 39(4), 1178-1183CrossrefGoogle Scholar

  • [46] Kambhampati S., Kjer K.M., Thorne L., Phylogenetic relationship among termite families based on DNA sequence of mitochondrial 16s ribosomal RNA gene, Insect. Mol. Biol.,1996, 5, 229-238CrossrefGoogle Scholar

  • [47] Kambhampati S., A phylogeny of cockroaches and related insects based on DNA sequence of mitochondrial ribosomal RNA genes, Proc. Natl. Acad. Sci. U.S.A., 1995., 92, 2017-2020Google Scholar

  • [48] Whitfield J.B., Cameron S.A., Hierarchical Analysis of Variation in the Mitochondrial 16S rRNA Gene Among Hymenoptera, Mol.Biol. Evol., 1998, 15, 1728-1743CrossrefGoogle Scholar

  • [49] Rao P. N., Rai K.S., Genome evolution in the mosquitoes and other closely related members of superfamily Culicoidea, Heriditas., 1990, 113, 139-144Google Scholar

  • [50] Shouche Y.S., Patole M.S., Sequence analysis of mitochondrial 16S ribosomal RNA gene fragment from seven mosquito species, J. Biosci., 2000, 25, 361-366Google Scholar

  • [51] Ullrich B., Reinhold K., Niehuis O., Misof B., Secondary structure and phylogenetic analysis of the internal transcribed spacers 1 and 2 of bush crickets (Orthoptera: Tettigoniidae: Barbitistini), J. Zool. Syst. Evol., 2009, 48, 219-22Google Scholar

  • [52] Black W.C., Piesman J., Phylogeny of hard- and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences, Proc. Natl. Acad. Sci. U.S.A., 1999, 91, 10034-10038Google Scholar

  • [53] Bernhard M., Cort L.A., Heike H., A Phylogeny of the Damselfly Genus Calopteryx (Odonata) Using Mitochondrial 16S rDNA Markers, Mol. Phylogenet. Evol., 2000, 15, 5-14Google Scholar

  • [54] Zardoya R., Meyer A., Phylogenetic Performance of Mitochondrial Protein-Coding Genes in Resolving Relationships Among Vertebrates, Mol. Biol. Evol., 1996, 13, 933-942CrossrefGoogle Scholar

  • [55] Navajas M., Gutierrez J., Lagnel J., Mitochondrial cytochrome oxidase I in tetranychid mites: a comparison between molecular phylogeny and changes of morphological and life history traits, Bull. Entomol. Res., 1996, 86, 407-417CrossrefGoogle Scholar

  • [56] Kain D.E., Sperling F.A.H., Daly H.V., Lane R.S., Mitochondrial DNA sequence variation in Ixodespacificus (Acari: Ixodidae), Heredity, 1999, 83, 378-386CrossrefGoogle Scholar

  • [57] Gray D.A., Barnfield P., Seifried M., Richards M.H., Molecular divergence between Gryllusrubens and Gryllustexensis, sister species of field crickets (Orthoptera: Gryllidae), Can. Entomol., 2006, 138, 305-313Google Scholar

  • [58] Tang J., Toe L., Back C., Unnasch T.R., Mitochondrial alleles of Simulium damnosum sensu lato infected with Onchocerca volvulus, Int. J. Parasitol., 1995, 25, 1251-1254CrossrefGoogle Scholar

  • [59] Hebert P.D.N., Cywinska A., Ball S.L., deWaard J.R., Biological identifications through DNA barcodes, Proc. R. Soc. B, Series B., 2003, 270, 313-321Google Scholar

  • [60] Ruiz-Lopez F., Wilkerson R.C., Conn J.E., McKeon S.N., Levin D.M., Quinones M.L., Povoa M.M., Linton Y.M., DNA barcoding reveals both known and novel taxa in the Albitarsis Group (Anopheles: Nyssorhynchus) of Neotropical malaria vectors, Parasit. Vectors., 2012, 5, 44Google Scholar

  • [61] Craft K.J., Pauls S.U., Darrow K., Miller S.E., Hebert P.D.N., Helgen L.E., et al., Population genetics of ecological communities with DNA barcodes: An example from New Guinea Lepidoptera, Proc.Natl. Acad. Sci. U.S.A., 2010, 107, 5041-6CrossrefGoogle Scholar

  • [62] Jones Y.L., Peters S.M., Weland C., Ivanova N.V., Yancy H.F., Potential Use of DNA Barcodes in Regulatory Science: Identification of the U.S. Food and Drug Administration‘s „Dirty 22,“ Contributors to the Spread of Foodborne Pathogens, J. Food Prot., 2013, 76, 144-9Google Scholar

  • [63] Vila M., Bjorklund M., The Utility of the Neglected Mitochondrial Control Region for Evolutionary Studies in Lepidoptera (Insecta), J. Mol. Evol., 2004, 58, 280-290CrossrefGoogle Scholar

  • [64] Fauron C.M., Wolstenholme D.R., Structural heterogeneity of mitochondrial DNA molecules within the genus Drosophila, Proc.Natl. Acad. Sci. U.S.A., 1976, 73, 3623-362CrossrefGoogle Scholar

  • [65] Mirol P.M., Garcia P.P., Dulout F.N., Mitochondrial variability in the D-loop of fourequine breeds shown by PCR-SSCP analysis, Genet. Mol. Biol., 2002, 25, 25-28CrossrefGoogle Scholar

  • [66] Bravo J.P., Felipes J., Zanatta D.B., Silva J.L.C., Fernandez M.A., Sequence and Analysis of the Mitochondrial DNA Control Region in the Sugarcane Borer Diatraeasaccharalis(Lepidoptera: Crambidae), Braz. Arch. Biol. Techn., 2008, 51, 671-677Google Scholar

  • [67] Zhang Y.X., Zhou Z.Y., Chang Y.L., Yang M.R., Shi F.M., The mtDNA control region structure and preliminary phylogenetic relationships of the genus Gampsocleis (Orthoptera: Tettigoniidae), Zootaxa., 2011, 2780, 39-47 Google Scholar

  • [68] Chilana P., Sharma A., Rai A., Insect genomic resources: status, availability and future, Curr. Sci., 2012, 102, 571-580Google Scholar

  • [69] Carew M.E., Pettigrove V.J., Metzeling L., Hoffmann A.A., Environmental monitoring using next generation sequencing: rapid identification of macroinvertebrate bioindicator species, Front. Zool., 2013, 10, 45CrossrefGoogle Scholar

  • [70] Lorenzo-Carballa M.O., Thompson D.J., Rivera A.C., Watts P.C., Next generation sequencing yields the complete mitochondrial genome of the scarce blue-tailed damselfly, Ischnura pumilio, Mitochond. DNA., 2011, 1940, 1744Google Scholar

  • [71] Kuhn K.L., Duan J.J., Hopper K.R., Next-generation genome sequencing and assembly provides tools for phylogenetics and identification of closely related species of Spathius, parasitoids of Agrilus planipennis (emerald ash borer), Biol. Control, 2013, 66, 77-82CrossrefGoogle Scholar

  • [72] Balke M., Watts C.H.S., Cooper S.J.B., Humphreys W.F., Vogler A.P., A highly modified stygobiont diving beetle of the genus Copelatus (Coleoptera, Dytiscidae): taxonomy and cladistic analysis based on mitochondrial DNA sequences, Syst. Entomol., 2004, 29, 59-67CrossrefGoogle Scholar

  • [73] Norgate M., Chaming J., Pavlova A., Bull J.K., Murray N.D., Sunnucks P., Mitochondrial DNA Indicates Late Pleistocene Divergence of Populations of Heteronympha merope, an Emerging Model in Environmental Change Biology, PLoS ONE., 2009, 11, e7950Google Scholar

  • [74] Barrett R.D.H., Hebert P.D.N., Identifying spiders through DNA barcode., C. J. Zool., 2005, 83, 481-491Google Scholar

  • [75] Buthelezi N.M., Conlong D.E., Zharare G.E., The groundnut leaf miner collected from South Africa is identified by mtDNA CO1 gene analysis as the Australian soybean moth (Aproaerema simplixella) (Walker) (Lepidoptera: Gelechiidae), Arf. J. Agric.Res., 2012, 7(38), 5285-5292Google Scholar

  • [76] El-Mergawy A.A.M.R., Faure N., Nasr I.M., Faghih A.A., Rochat D., Silvain J. F., Mitochondrial genetic variation and invasion history of the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in Middle-East and Mediterranean basin, Int. J.Agr. Biol., 2011,13, 631-637Google Scholar

  • [77] Wallman J.F., Leys R., Hogendoorn K., Molecular systematics of Australian carrion-breeding blowflies (Diptera: Calliphoridae) based on mitochondrial DNA, Invertebr. Syst., 2006, 19, 1-15Google Scholar

  • [78] Kranti S., Kranthi K.R., Bharose A.A., Shed S. N., Dhawad C. S., Wadaskar R. M., Behere G.T., Patil E.K., Cytochrome oxidase I sequence of Helicoverpa (Noctuidae: Lepidoptera) species in India- Its utility as a molecular tool, Indian J. Biotechnol., 2005, 5, 195-199Google Scholar

  • [79] Tanaka H., Roubik D.W., Kato M., Liew F., Gunsalam G., Phylogenetic position of Apisnuluensis of northern Borneo and phylogeography of A. cerana as inferred from mitochondrial DNA sequences, Insect Soc., 2001, 48, 44-51CrossrefGoogle Scholar

  • [80] Mahendran B., Ghosh S.K., Kundu S.C., Molecular phylogeny of silk-producing insects based on 16S ribosomal RNA and cytochrome oxidase subunit I genes, J. Genet., 2006, 85, 31-8Google Scholar

  • [81] Budak M., Korkmaz E.M., Basibuyuk H.H., A molecular phylogeny of the Cephinae (Hymenoptera, Cephidae) based on mt DNA COI gene: a test of traditional classification, Zookeys., 2011, 130, 363-378Google Scholar

  • [82] Bae JS., Kim I., Sohn H.D., Jin B.R., The mitochondrial genome of the firefly, Pyrocoeliarufa: complete DNA sequence, genome organization, and phylogenetic analysis with other insects, Mol. Phylogenet. Evol., 2004, 32, 978-985 CrossrefGoogle Scholar

About the article

Received: 2013-12-07

Accepted: 2014-02-16

Published Online: 2014-04-24

Published in Print: 2014-01-01


Citation Information: DNA Barcodes, ISSN (Online) 2299-1077, DOI: https://doi.org/10.2478/dna-2014-0001.

Export Citation

© 2014 Surajit De Mandal et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Karl M. Kjer, Chris Simon, Margarita Yavorskaya, and Rolf G. Beutel
Journal of The Royal Society Interface, 2016, Volume 13, Number 121, Page 20160363

Comments (0)

Please log in or register to comment.
Log in