Jump to ContentJump to Main Navigation
Show Summary Details
More options …

DNA Barcodes

Ed. by Mitchell, Andrew

1 Issue per year

Emerging Science

Open Access
See all formats and pricing
More options …

A successful case of DNA barcoding used in an international trade dispute

Chen Jian
  • Corresponding author
  • Zhongshan Entry-Exit Inspection and Quarantine Bureau Technology Center, 2, Zhongshan 6 Road, Zhongshan 528403,Guangdong, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Qiu Deyi
  • Zhongshan Entry-Exit Inspection and Quarantine Bureau Technology Center, 2, Zhongshan 6 Road, Zhongshan 528403,Guangdong, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yue Qiaoyun
  • Zhongshan Entry-Exit Inspection and Quarantine Bureau Technology Center, 2, Zhongshan 6 Road, Zhongshan 528403,Guangdong, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hu Jia
  • Guangdong Entry-Exit Inspection and Quarantine Bureau Technology Center, 66, Hua Cheng Da Dao, Guangzhou 510263, Guangdong, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Liu Dexing
  • Zhongshan Entry-Exit Inspection and Quarantine Bureau Technology Center, 2, Zhongshan 6 Road, Zhongshan 528403,Guangdong, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wei Xiaoya
  • Zhongshan Entry-Exit Inspection and Quarantine Bureau Technology Center, 2, Zhongshan 6 Road, Zhongshan 528403,Guangdong, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zheng Leiqing
  • Zhongshan Entry-Exit Inspection and Quarantine Bureau Technology Center, 2, Zhongshan 6 Road, Zhongshan 528403,Guangdong, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-08-27 | DOI: https://doi.org/10.2478/dna-2014-0004


Roasted barley tea is a highly respected healthy food product, which is very popular in eastern countries, especially Japan and Korea. Contamination or substitution with other plant components could cause disputes in the trade of so called ‘pure’ or ‘100%’ barley powder. Identification of these products based on morphology is impossible because they have been crushed into ultra-fine powder. DNA barcoding provides a fast and effective detection tool for identification of the plant components from the processed foods without considering the morphological characters. Here, we used DNA barcoding techniques to explore the composition of roasted barley tea (Hordeum vulgare), which was exported to X country from China but then returned, due to the detection of other plant components present. We amplified four commonly used DNA barcodes (rbcL, matK, trnH-psbA, ITS2) to identify the plant components in the roasted barley tea. Out of the 13 batches, one (7.7%) was substituted with Morus sp.; twelve (92.31%) contained authentic with H. vulgare DNA barcodes. However, out of the 12 authentic batches only two (15.38%) were detected with only H. vulgare DNA barcodes, whilst ten (76.9%) were contaminated with other plant components. We also developed an alternative protocol for amplification of matK, which is present in a single copy in the cell and difficult to amplify with the commonly used protocol, and matK sequences were amplified easily with our new protocol from all 13 batches studied.

Keywords : Roasted barley powder; international trade disputes; DNA barcodes; KOD FX DNA polymerase; matK


  • [1] Dong W.G., Polyphenols extracted from Roasted barley tea, Journal of Mudanjiang Normal University., 2006, 4, 32-33, (in Chinese) Google Scholar

  • [2] Liu X.J., Wang Z.Y., Chen Q.F., Chen X.Q., Xiao R.Z., The research for quality and stability of Roasted barley tea, The Light and Textile Industries of Fujian., 2006, 11, 60-63, (in Chinese) Google Scholar

  • [3] Xu C., Cai Y., Zhang J., Fukasawa M., Moriya N., Ensiling and subsequent ruminal degradation characteristics of barley tea grounds treated with contrasting additives, Animal Feed Science and Technology., 2008, 141, 368-374 Web of ScienceGoogle Scholar

  • [4] Wang X.P., Zhou Y., Tong L., Determination of 16 mineral elements and acryl amide in barley tea samples produced in three different regions of China, Studies of Trace Elements and Health., 2006, 23, 37-40, (in Chinese with English abstract) Google Scholar

  • [5] Zheng R.D., Research on technology for hot-filled barley drinks, The Beverage Industry., 2007, 10, 37-40, (in Chinese with English abstract) Google Scholar

  • [6] López M.I., Trullols E., Callao M.P., Ruisánchez I., Multivariate screening in food adulteration: Untargeted versus targeted modelling, Food chemistry., 2014, 147, 177-181 Web of ScienceGoogle Scholar

  • [7] Krska R., Becalski A., Braekevelt E., Koerner T., Cao X., Dabeka R., et al., Challenges and trends in the determination of selected chemical contaminants and allergens in food, Analytical and Bioanalytical Chemistry., 2012, 402(1), 139-162 Web of ScienceGoogle Scholar

  • [8] Moore J.C., Spink J., Lipp M., Development and application of a database of food ingredient fraud and economically motivated adulteration from 1980 to 2010, Journal of Food Science., 2012, 77(4), 118-126 Google Scholar

  • [9] Techen N., Crockett S.L., Khan I.A., Scheffler B.E. Authentication of medicinal plants using molecular biology techniques to compliment conventional methods, Current medicinal chemistry., 2004, 11, 1391-1401 PubMedCrossrefGoogle Scholar

  • [10] Song J., Yao H., Li Y., Li X., Lin Y., Liu C., et al., Authentication of the family Polygonaceae in Chinese pharmacopoeia by DNA barcoding technique, Journal of ethnopharmacology., 2009, 124, 434-439 Web of ScienceGoogle Scholar

  • [11] Srirama R., Senthilkumar U., Sreejayan N., Ravikanth G., Gurumurthy B.R., Shivanna M.B., et al., Assessing species admixtures in raw drug trade of Phyllanthus, a hepato-protective plant using molecular tools, Journal of ethnopharmacology., 2010, 130, 208-215 Web of ScienceGoogle Scholar

  • [12] Stoeckle M.Y., Gamble C.C., Kirpekar R., Young G., Ahmed S., Little D.P., Commercial teas highlight plant DNA barcode identification successes and obstacles, Scientific reports., 2011, 1, 42 Google Scholar

  • [13] Jaakola L., Suokas M., Häggman H., Novel approaches based on DNA barcoding and high-resolution melting of amplicons for authenticity analyses of berry species, Food Chemistry., 2010, 123, 494-500 Web of ScienceGoogle Scholar

  • [14] Bruni I., De Mattia F., Galimberti A., Galasso G., Banfi E., Casiraghi M., et al., Identification of poisonous plants by DNA barcoding approach, International journal of legal medicine., 2010, 124, 595-603 Web of ScienceGoogle Scholar

  • [15] Newmaster S.G., Grguric M., Shanmughanandhan D., Ramalingam S., Ragupathy S., DNA barcoding detects contamination and substitution in North American herbal products, BMC medicine., 2013, 11(1), 222 Web of ScienceCrossrefPubMedGoogle Scholar

  • [16] Hebert P.D., Cywinska A., Ball S.L., deWaard J.R., Biological identifications through DNA barcodes, Proceedings of the Royal Society of London, Series B: Biological Sciences., 2003, 270(1512), 313-321 Google Scholar

  • [17] Hebert P.D.N., Gregory T.R., The promise of DNA barcoding for taxonomy, Systematic biology., 2005, 54, 852-859 Google Scholar

  • [18] Stockinger H., Krüger M., Schüßler A., DNA barcoding of arbuscular mycorrhizal fungi, New Phytologist., 2010, 187(2), 461-474 Google Scholar

  • [29] Frézal L., Leblois R., Four years of DNA barcoding: current advances and prospects, Infection, Genetics and Evolution., 2008, 8(5), 727-736 CrossrefWeb of ScienceGoogle Scholar

  • [20] Gilmore S.R., Graefenhan T., Louis-Seize G., Seifert K.A., Multiple copies of cytochrome oxidase 1 in species of the fungal genus Fusarium, Molecular Ecology Resources., 2009, 9(s1), 90-98 Web of ScienceGoogle Scholar

  • [21] Hajibabaei M., Singer G.A., Hebert P.D., Hickey D.A., DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics, TRENDS in Genetics., 2007, 23(4),167-172 Web of ScienceCrossrefGoogle Scholar

  • [22] Tautz D., Arctander P., Minelli A., Thomas R.H., Vogler A.P., A plea for DNA taxonomy, Trends in Ecology and Evolution., 2003, 18(2), 70-74 Google Scholar

  • [23] Witt J.D., Threloff D.L., Hebert P.D., DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation, Molecular Ecology., 2006, 15(10), 3073-3082 CrossrefGoogle Scholar

  • [24] Li M., Cao H., But P.P.H., Shaw P.C., Identification of herbal medicinal materials using DNA barcodes, Journal of Systematics and Evolution., 2011, 49(3), 271-283 Web of ScienceCrossrefGoogle Scholar

  • [25] Ramadan H.A., Sequence of specific mitochondrial 16S rRNA gene fragment from Egyptian buffalo is used as a pattern for discrimination between river buffaloes, cattle, sheep and goats, Molecular biology reports., 2011, 38(6), 3929-3934 CrossrefWeb of ScienceGoogle Scholar

  • [26] Li M., Wong K.L., Chan W.H., Li J.X., But P.P.H., Cao H., et al., Establishment of DNA barcodes for the identification of the botanical sources of the Chinese ‘cooling’beverage, Food control., 2012, 25(2), 758-766 Web of ScienceCrossrefGoogle Scholar

  • [27] Hollingsworth P.M., et al., A DNA barcode for land plants, Proceedings of the National Academy of Sciences., 2009, 106(31), 12794-12797 Google Scholar

  • [28] Kress W.J., Erickson D.L., A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region, PLoS one., 2007, 2(6), e508 Google Scholar

  • [29] Kress W.J., Wurdack K.J., Zimmer E.A., Weigt L.A., Janzen D.H., Use of DNA barcodes to identify flowering plants, Proceedings of the National Academy of Sciences of the United States of America., 2005, 102(23), 8369-8374 CrossrefGoogle Scholar

  • [30] The protocol instruction of Wizard Genomic DNA Purification Kit (Promega, USA) Google Scholar

  • [31] Chen, S., Yao, H., Han, J., Liu, C., Song, J., Shi, L., et al., Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species, PloS one., 2010, 5(1), e8613 Google Scholar

  • [32] Sang T., Crawford D., Stuessy T., Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae), American Journal of Botany., 1997, 84(8), 1120-1120 CrossrefGoogle Scholar

  • [33] Tate J.A., Simpson B.B., Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species, Systematic Botany., 2003, 28(4), 723-737 Google Scholar

  • [34] Levin, R.A., Wagner, W.L., Hoch, P.C., Nepokroeff, M., Pires, J.C., Zimmer, E.A., et al., Family-level relationships of Onagraceae based on chloroplast rbcL and ndhF data, American Journal of Botany., 2003, 90(1), 107-115 CrossrefGoogle Scholar

  • [35] Costion C., Ford A., Cross H., Crayn D., Harrington M., Lowe A., Plant DNA barcodes can accurately estimate species richness in poorly known floras, PloS one., 2011, 6(11), e26841 Web of ScienceGoogle Scholar

  • [36] Hollingsworth P.M., Graham S.W., Little D.P., Choosing and using a plant DNA barcode, PloS one., 2011, 6(5), e19254 Google Scholar

  • [37] Valentini, A., Miquel, C., Nawaz, M.A., Bellemain, E.V. A., Coissac, E., Pompanon, F., et al., New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: the trnL approach, Molecular Ecology Resources., 2009, 9(1), 51-60 CrossrefWeb of ScienceGoogle Scholar

  • [38] Stech M., Kolvoort E., Loonen M., Vrieling K., Kruijer J.D., Bryophyte DNA sequences from faeces of an arctic herbivore, barnacle goose (Branta leucopsis), Molecular Ecology Resources., 2011, 11(2), 404-408 Web of ScienceCrossrefGoogle Scholar

  • [39] Staudacher K., Wallinger C., Schallhart N., Traugott M., Detecting ingested plant DNA in soil-living insect larvae, Soil Biology and Biochemistry., 2011, 43(2), 346-350 Web of ScienceGoogle Scholar

  • [40] Jurado-Rivera J.A., Vogler A.P., Reid C.A., Petitpierre E., Gómez-Zurita J., DNA barcoding insect–host plant associations, Proceedings of the Royal Society B: Biological Sciences., 2009, 276(1657), 639-648 Web of ScienceGoogle Scholar

  • [41] Kesanakurti, P.R., Fazekas, A.J., Burgess, K.S., Percy, D.M., Newmaster, S.G., Graham, S.W., et al., Spatial patterns of plant diversity below‐ground as revealed by DNA barcoding, Molecular Ecology., 2011, 20(6), 1289-1302 Web of ScienceCrossrefGoogle Scholar

  • [42] Cuénoud P., Savolainen V., Chatrou L.W., Powell M., Grayer R.J., Chase M.W., Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences, American Journal of Botany., 2002, 89(1),132-144 CrossrefGoogle Scholar

  • [43] Hilu K., Liang H., The matK gene: sequence variation and application in plant systematics, American Journal of Botany., 1997, 84(6), 830-830 CrossrefGoogle Scholar

  • [44] Balázs, M., Rónavári, A., Németh, A., Bihari, Z., Rutkai, E., Bartos, P., et al., Effect of DNA polymerases on PCR-DGGE patterns, International Biodeterioration and Biodegradation., 2012, 84, 244-249Google Scholar

About the article

Received: 2014-01-20

Accepted: 2014-06-12

Published Online: 2014-08-27

Citation Information: DNA Barcodes, Volume 2, Issue 1, ISSN (Online) 2299-1077, DOI: https://doi.org/10.2478/dna-2014-0004.

Export Citation

© 2014 Chen Jian, et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Bashir Mohammed Abubakar, Faezah Mohd Salleh, Mohd Shahir Shamsir Omar, and Alina Wagiran
Evidence-Based Complementary and Alternative Medicine, 2017, Volume 2017, Page 1
Ramanujam Srirama, J. U. Santhosh Kumar, G. S. Seethapathy, Steven G. Newmaster, S. Ragupathy, K. N. Ganeshaiah, R. Uma Shaanker, and Gudasalamani Ravikanth
Drug Safety, 2017, Volume 40, Number 8, Page 651

Comments (0)

Please log in or register to comment.
Log in