Jump to ContentJump to Main Navigation
Show Summary Details
More options …

DNA Barcodes

Ed. by Mitchell, Andrew

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2299-1077
See all formats and pricing
More options …

Status of DNA Barcoding Coverage for the Tropical Western Atlantic Shorefishes and Reef Fishes

Benjamin C. Victor / Martha Valdez-Moreno
  • Departamento de Ecologia y Sistematica Acuatica, El Colegio de la Frontera Sur, Chetumal, Quintana Roo, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lourdes Vásquez-Yeomans
  • Departamento de Ecologia y Sistematica Acuatica, El Colegio de la Frontera Sur, Chetumal, Quintana Roo, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-11-26 | DOI: https://doi.org/10.1515/dna-2015-0011

Abstract

Background: Barcode coverage is difficult to assess for large regions due to incomplete species lists, inaccurate identifications, and cryptic diversity. However, as coverage approaches completion, it becomes possible to critically evaluate identifications and validate barcode lineages. We collate the results of the FISH-BOL barcode project and assess coverage for each family of bony shorefishes and reef fishes from the tropical western Atlantic Ocean. Methodology: We identify to species the public and private barcode lineages from the region on BOLD, confirming identifications by vouchers, phylogeographic deduction, and the process of elimination. The lineages and BINs are assigned to species from a comprehensive species list for the region. Results: We estimate 1029 of 1311 total bony shorefish species in the region are barcoded (78.5%). For reef-associated fishes, 902 of 1083 species are barcoded (83.3%). About 70 of the 181 species not yet barcoded are endemic species from Florida/ Gulf of Mexico or Venezuela, leaving about 90% of the central Caribbean reef fish species barcoded to date. Most species are represented by one barcode lineage, but among the gobioids and blennioids there are many more lineages (BINs) than species, indicating substantial cryptic diversity. Conclusions: As barcode coverage for a region approaches completion, a robust assessment of coverage can be made. The reef fish fauna of the tropical western Atlantic now has the highest coverage for a large marine area, from about 80 to 90% depending on definitions and geographic limits.

Keywords: Mitochondrial DNA; coral reefs; Caribbean; taxonomy; biogeography; species list; phylogenetics

References

  • [1] Ratnasingham S., Hebert P., BOLD: The barcode of life data system, Mol. Ecol. Notes, 2007, 7, 355-364Web of ScienceCrossrefGoogle Scholar

  • [2] Ward R.D., Hanner R., Hebert P.D.N., The campaign to DNA barcode all fishes, FISH-BOL, J. Fish. Biol., 2009, 74, 329-356CrossrefWeb of ScienceGoogle Scholar

  • [3] Steinke D., Hanner R., The FISH-BOL Collaborators Protocol, Mitochondrial DNA, 2011, 22, 10-14Google Scholar

  • [4] Victor B.C., How many coral reef fish species are there? Cryptic diversity and the new molecular taxonomy, In: Mora C. (Ed.), Ecology of Fishes on Coral Reefs, Cambridge University Press, Cambridge, 2015Google Scholar

  • [5] April J., Mayden R.L., Hanner R.H., Bernatchez L., Genetic calibration of species diversity among North America’s freshwater fishes, Proc. Natl. Acad. Sci., 2011, 108, 10602-10607CrossrefGoogle Scholar

  • [6] Geiger M.F., Herder F., Monaghan M.T., Almada V., Barbieri R., Bariche M., et al., Spatial heterogeneity in the Mediterranean Biodiversity Hotspot affects barcoding accuracy of its freshwater fishes, Mol. Ecol. Resour., 2014, 14 (6), 1210-21, doi: 10.1111/1755-0998.12257Web of ScienceCrossrefGoogle Scholar

  • [7] Coll M., Piroddi C., Steenbeek J., Kaschner K., Lasram F.B.R., Aguzzi J., et al., The biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats, PLoS ONE, 2010, 5 (8), e11842. doi: 10.1371/journal.pone.0011842CrossrefGoogle Scholar

  • [8] Landi M., Dimech M., Arculeo M., Biondo G., Martins R., Carneiro M., et al., DNA Barcoding for Species Assignment: The Case of Mediterranean Marine Fishes, PLoS ONE, 2014, 9 (9), e106135. doi:10.1371/journal.pone.0106135CrossrefGoogle Scholar

  • [9] Keskin E., Atar H.H., DNA barcoding commercially important fish species of Turkey, Mol. Ecol. Res., 2013, 13, 788-797CrossrefWeb of ScienceGoogle Scholar

  • [10] Mabragaña E., Dıaz de Astarloa J.M., Hanner R., Zhang J., Gonzalez Castro M., DNA Barcoding Identifies Argentine Fishes from Marine and Brackish Waters, PLoS ONE, 2011, 6 (12), e28655. doi:10.1371/journal.pone.0028655CrossrefWeb of ScienceGoogle Scholar

  • [11] Dıaz de Astarloa J.M., Ezequiel Mabragaña E., González- Castro M., Rosso J.J., Delpiani M., DNA Barcoding of Marine and Freshwater Fishes of Argentina: Progress after 8 Years of Research and Future Directions, in this volumeGoogle Scholar

  • [12] Steinke D., Zemlak T.S., Boutillier J.A., Hebert P.D.N., DNA barcoding Pacific Canada’s fishes, Mar. Biol., 2009, 156, 2641-2647, doi: 10.1007/s00227-009-1284-0Web of ScienceCrossrefGoogle Scholar

  • [13] Hubert N., Hanner R., Holm E., Mandrak N.E., Taylor E., Burridge M., et al., Identifying Canadian freshwater fishes through DNA barcodes, PLoS One, 2008, 3, e2490Google Scholar

  • [14] Hubert N., Meyer C.P., Bruggemann H.J., Guérin F., Komeno R.J.L., Espiau B., et al., Cryptic Diversity in Indo-Pacific Coral-Reef Fishes Revealed by DNA-Barcoding Provides New Support to the Centre-of-Overlap Hypothesis, PLoS ONE, 2012, 7 (3), doi:10.1371/journal.pone.0028987CrossrefGoogle Scholar

  • [15] Ward R.D., Zemlak T.S., Innes B.H., Last P.R., Hebert P.D.N., DNA barcoding Australia’s fish species, Phil. Trans. Roy. Soc. B-Bio. Sci., 2005, 360: 1847-1857Google Scholar

  • [16] Swartz E., Mwale M., Hanner R., A role for barcoding in the study of African fish diversity and conservation, S. Afr. J. Sci., 2008, 104, 293-298Google Scholar

  • [17] Zhang J., Hanner R., Molecular Approach to the Identification of Fish in the South China Sea, PLoS ONE, 2012, 7 (2), e30621. doi:10.1371/ journal.pone.0030621CrossrefGoogle Scholar

  • [18] Allen G.R., Erdmann M.V., Reef fishes of the East Indies, Tropical Reef Research, Perth, Australia, 2012Google Scholar

  • [19] Robertson D.R., Van Tassell J., Shorefishes of the Greater Caribbean: online information system, Version 1.0 Smithsonian Tropical Research Institute, Balboa, Panamá, 2015Google Scholar

  • [20] Valdez-Moreno M., Vásquez-Yeomans L., Elías-Gutiérrez M., Ivanova N.V., Hebert P.D.N., Using DNA barcodes to connect adults and early life stages of marine fishes from the Yucatan Peninsula, Mexico: potential in fisheries management, Mar. Fresh. Res., 2010, 61, 655-671CrossrefGoogle Scholar

  • [21] Weigt L.A., Baldwin C.C., Driskell A., Smith D.G., Ormos A., Reyier E.A., Using DNA Barcoding to Assess Caribbean Reef Fish Biodiversity: Expanding Taxonomic and Geographic Coverage, PLOS One, 2012, 7 (7), 1-7Web of ScienceGoogle Scholar

  • [22] Robertson D.R., Cramer K.C., Defining and Dividing the Greater Caribbean: Insights from the Biogeography of Shorefishes, PLos ONE, 2014, 9, e102918Web of ScienceGoogle Scholar

  • [23] Kulbicki M., Parravicini V., Bellwood D.R., Arias-González E., Chabanet P., Floeter S.R., et al. Global Biogeography of Reef Fishes: A Hierarchical Quantitative Delineation of Regions, PLoS ONE, 2013, 8 (12), e81847. doi:10.1371/journal. pone.0081847CrossrefGoogle Scholar

  • [24] Floeter S.R., Rocha L.A., Robertson D.R., Joyeux J.C., Smith-Vaniz W.F., Wirtz P., et al., Atlantic reef fish biogeography and evolution. J. Biogeog., 2008, 35, 22-47, doi: 10.1111/j.1365-2699.2007.01790.xCrossrefGoogle Scholar

  • [25] Ratnasingham S., Hebert P.D.N., A DNA-Based Registry for All Animal Species: The Barcode Index Number (BIN) System, PLoS ONE, 2013, 8 (7), e66213. doi:10.1371/journal.pone.0066213CrossrefGoogle Scholar

  • [26] Randall J.E., Caribbean Reef Fishes, T.F.H. Publications, Hong Kong, 1983Google Scholar

  • [27] Böhlke J.E., Chaplin C.C.G., Fishes of the Bahamas and adjacent tropical waters, 2nd ed., University of Texas Press, Austin, 1993Google Scholar

  • [28] McEachran J.D., Fechhelm J.D., Fishes of the Gulf of Mexico, University of Texas Press, Austin, 1998Google Scholar

  • [29] Carpenter K.E. (Ed.), The Living Marine Resources of the Western Central Atlantic, FAO Species Identification Guide for Fishery Purposes, FAO, Rome, 2002Google Scholar

  • [30] Eschmeyer W. N. (Ed). Catalog of Fishes, 2015 http://researcharchive. calacademy.org/research/ichthyology/catalog/ fishcatmain.aspGoogle Scholar

  • [31] Baldwin C.C., Weigt L.A., Smith D.G., Mounts J.H., Reconciling Genetic Lineages with Species in Western Atlantic Coryphopterus (Teleostei: Gobiidae), Smithson. Contrib. Mar. Sci., 2009, 38, 111-138Google Scholar

  • [32] Eytan R.I., Hellberg M.E., Nuclear and mitochondrial sequence data reveal and conceal different demographic histories and population genetic processes in Caribbean reef fishes, Evolution, 2010, 64, 3380-3397Google Scholar

  • [33] Tornabene L., Baldwin C.C., Weigt L.A., Pezold F., Exploring the diversity of western Atlantic Bathygobius (Teleostei: Gobiidae) using cytochrome-c oxidase subunit I, with descriptions of two new species, Aqua, Int. J. Ichthy., 2010, 16, 141-170Google Scholar

  • [34] Victor B.C. The Redcheek Paradox: the mismatch between genetic and phenotypic divergence among deeply divided mtDNA lineages in a coral-reef goby, with the description of two new cryptic species from the Caribbean Sea, J. Ocean Sci. Found., 2010, 3, 2-16Google Scholar

  • [35] Victor B.C. Emblemariopsis carib and Emblemariopsis arawak, two new chaenopsid blennies from the Caribbean Sea: DNA barcoding identifies males, females, and juveniles and distinguishes sympatric cryptic species, J. Ocean Sci. Found., 2010, 4, 1-29Google Scholar

  • [36] Baldwin C.C., Castillo C., Weigt L.A., Victor B.C., Seven new species within western Atlantic Starksia atlantica, S. lepicoelia, and S. sluiteri (Teleostei, Labrisomidae), with comments on congruence of DNA barcodes and species, ZooKeys, 2011, 79, 21-72Web of ScienceGoogle Scholar

  • [37] Victor B.C., The Caribbean Roughhead Triplefin (Enneanectes boehlkei): DNA barcoding reveals a complex of four West Indian sympatric cryptic species (Teleostei: Blennioidei: Tripterygiidae), J. Ocean Sci. Found., 2013, 7, 44-73Google Scholar

  • [38] Abdullah A., Rehbein H., Authentication of raw and processed tuna from Indonesian markets using DNA barcoding, nuclear gene and character-based approach, Eur. Food Res. Tech., 2014, 239 (4), 695-706 DOI:10.1007/s00217-014-2266-0 CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2015-01-26

Accepted: 2015-07-13

Published Online: 2015-11-26

Published in Print: 2015-01-01


Citation Information: DNA Barcodes, ISSN (Online) 2299-1077, DOI: https://doi.org/10.1515/dna-2015-0011.

Export Citation

© 2015. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
CA Harms-Tuohy, NV Schizas, and RS Appeldoorn
Marine Ecology Progress Series, 2016, Volume 558, Page 181

Comments (0)

Please log in or register to comment.
Log in