Jump to ContentJump to Main Navigation
Show Summary Details
More options …

DNA Barcodes

1 Issue per year

Emerging Science

Open Access
See all formats and pricing
More options …

Species delimitation in Neoplecostomus (Siluriformes: Loricariidae) using morphologic and genetic approaches

Fábio F. Roxo
  • Corresponding author
  • Universidade Estadual Paulista, UNESP, Departamento de Morfologia, Laboratório de Biologia e Genética de Peixes, Distrito de Rubião Junior s/n, CEP 18618-970 Botucatu, São Paulo State, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Luz E. Ochoa
  • Universidade Estadual Paulista, UNESP, Departamento de Morfologia, Laboratório de Biologia e Genética de Peixes, Distrito de Rubião Junior s/n, CEP 18618-970 Botucatu, São Paulo State, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Guilherme J. Costa-Silva
  • Universidade Estadual Paulista, UNESP, Departamento de Morfologia, Laboratório de Biologia e Genética de Peixes, Distrito de Rubião Junior s/n, CEP 18618-970 Botucatu, São Paulo State, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Claudio Oliveira
  • Universidade Estadual Paulista, UNESP, Departamento de Morfologia, Laboratório de Biologia e Genética de Peixes, Distrito de Rubião Junior s/n, CEP 18618-970 Botucatu, São Paulo State, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-11-26 | DOI: https://doi.org/10.1515/dna-2015-0014


In the present study, we compare the results of alpha taxonomy (based on morphology), DNA Barcoding method with a 2% genetic divergence threshold, and the GMYC (General Model Yule Coalescent) technique to identify species clusters in Neoplecostomus. We used partial sequences of mitochondrial COI (Cytochrome oxidase subunit I) for 59 specimens representing 13 valid species (Neoplecostomus bandeirante, N. jaguari, N. langeanii, N. paranensis, N. yapo, N. botucatu, N. selenae, N. doceensis, N. corumba, N. ribeirensis, N. microps, N. espiritosantensis and N. franciscoensis) of Neoplecostomus collected in all its distribution area. For the analysis we used Bayesian inference of phylogeny with relaxed clock methods on an arbitrary timescale, using BEAST. The ultrametrics genes trees obtained for each tree prior evaluated (Yule, Birth-death and coalescent Population Size) were used in the GMYC analysis to identify a time in the tree when the branching rate shifts (in forward time) from Yule and Birth-Death (species) to a coalescent (population) process. We found that the GMYC model using the Yule prior identified 11 groups, closer to the current taxonomy (13 species). GMYC analyses using other ultrametric gene trees estimated under alternative prior such as Birth-Death and Coalescent Population Size, identified 9 groups, results observed in the traditional 2% genetic distance threshold, resulting in a low number of species recognized compared to the number of species identified with current taxonomy. Based on these results we conclude that the molecular approaches are helpful to distinguish species of Neoplecostomus, nevertheless it is important to combine molecular methodologies with current taxonomy in order to identify correctly species that recently originated.

This article offers supplementary material which is provided at the end of the article.

Keywords: Neotropical fish; Neoplecostominae; GMYC model


  • [1] Bickford D., Lohman D.J., Sodhi N.S., Ng P.K.L., Meier R., Winker K., et al., Cryptic species as a window on diversity and conservation, Trends Ecol. Evol., 2006, 22 (3), 148-155Google Scholar

  • [2] Melo B.F., Benine R.C., Mariguela T.C., Oliveira C., A new species of Tetragonopterus Cuvier, 1816 (Characiformes: Characidae: Tetragonopterinae) from the rio Jari, Amapá, northern Brazil, Neot. Ichth., 2011, 9 (1), 49-56Google Scholar

  • [3] Roxo F.F., Oliveira C., Zawadzki C.H., Three new species of the Loricariid genus Neoplecostomus (Teleostei: Siluriformes) from Upper Rio Paraná basin, southeastern Brazil, Zootaxa, 2012a, 3233, 1-21Google Scholar

  • [4] Hebert P.D.N., Cywinska A., Ball S.L., De Waard J.R., Biological identifications through DNA barcodes, Proc. R Soc. Lond. Ser. B Biol. Sci., 2003, 270, 313-321Google Scholar

  • [5] Hebert P.D.N., Stoeckle M.Y., Zemlak T.S., Francis C.M., Identification of birds through DNA barcodes, PLoS Biol., 2004, 2, 1657-1663CrossrefGoogle Scholar

  • [6] Ward R.D., Zemlak T.S., Innes B.H., Last P.R., Hebert P.D.N., DNA barcoding Australia’s fish species, Philos. Trans. R Soc. Lond. Ser. B Biol. Sci., 2005, 360, 1847-1857Google Scholar

  • [7] Clare E.L., Lim B.K., Engstrom M.D., Eger J.L., Hebert P.D.N., DNA barcoding of Neotropical bats: Species identification and discovery within Guyana, Mol. Ecol. Notes, 2007, 7, 184-190CrossrefGoogle Scholar

  • [8] Kelly R.P., Sarkar I.N., Eernisse D.J., DeSalle R., DNA barcoding using chitons (genus Mopalia), Mol. Ecol. Notes, 2007, 7, 177-183CrossrefGoogle Scholar

  • [9] Hubert N., Hanner R., Holm E., Mandrak N.E., Taylor E., Burridge M., et al., Identifying Canadian freshwater fishes through DNA barcodes, PloS One, 2008, 3 (6), e2490Google Scholar

  • [10] Valdez-Moreno M., Ivanova N.V., Elías-Guitiérrez M., Contreras Balderas S., Hebert P.D.N., Probing diversity in freshwater fishes from Mexico and Guatemala with DNA barcodes, J. Fish Biol., 2009, 74, 377-402CrossrefGoogle Scholar

  • [11] Ward R.D., DNA barcode divergence among species and genera of birds and fishes, Mol. Ecol. Resour., 2009, 9, 1077-1085CrossrefGoogle Scholar

  • [12] April J., Hanner R.H., Dion-Cote A.M., Bernatchez L., Glacial cycles as an allopatric speciation pump in north-eastern American freshwater fishes, Mol. Ecol., 2012, 22 (2), 409-422Google Scholar

  • [13] Barraclough T.G., Hughes M., Ashford-Hodges N., Fujisawa T., Inferring evolutionarily significant units of bacterial diversity from broad environmental surveys of single-locus data, Biol. Lett., 2009, 5, 425-428CrossrefGoogle Scholar

  • [14] Pons J., Barraclough T.G., Gomez-Zurita J., Cardoso A., Duran D.P., Hazell S., Vogler A.P., Sequence-based species delimitation for the DNA taxonomy of undescribed insects, 2006, Syst. Biol., 55 (4), 595-609CrossrefGoogle Scholar

  • [15] Knowles L.L., Carstens B.C., Delimiting species without monophyletic gene trees, Syst. Biol., 2007, 56 (6), 887-895CrossrefGoogle Scholar

  • [16] Yang Z., Rannala B., Bayesian species delimitation using multilocus sequence data, Proc. Natl. Acad. Sci., 2010, 107 (20), 9264-9269CrossrefGoogle Scholar

  • [17] Ence D.D., Carstens B.C., SpedeSTEM: a rapid and accurate method for species delimitation, Mol. Ecol. Res., 2011, 11 (3), 473-480CrossrefGoogle Scholar

  • [18] Fujisawa T., Barraclough T.G., Delimiting species using single-locus data and the generalized mixed yule coalescent (GMYC) approach: a revised method and evaluation on simulated datasets, Syst. Biol., 2013, syt033Google Scholar

  • [19] Fontaneto D., Herniou E.A., Boschetti C., Caprioli M., Melone G., Ricci C., Barraclough T.G., Independently evolving species in asexual bdelloid rotifers, PloS Biol., 2007, 5 (4), e87CrossrefGoogle Scholar

  • [20] Barraclough T.G., Birky C.W., Burt A., Diversification in sexual and asexual organisms, Evolution, 2003, 57 (9), 2166-2172CrossrefGoogle Scholar

  • [21] De Queiroz K., Species concepts and species delimitation, Syst. Biol., 2007, 56 (6), 879-886CrossrefGoogle Scholar

  • [22] Monaghan M.T., Wild R., Elliot M., Fujisawa T., Balke M., Inward D.J., Vogler A.P., Accelerated species inventory on Madagascar using coalescent-based models of species delineation, Syst. Biol., 2009, 58 (3), 298-311CrossrefGoogle Scholar

  • [23] Marshall D.C., Hill K.B., Cooley J.R., Simon C., Hybridization, mitochondrial DNA phylogeography, and prediction of the early stages of reproductive isolation: lessons from New Zealand cicadas (Genus Kikihia), Syst. Biol., 2011, 60(4), 482-502CrossrefGoogle Scholar

  • [24] Vuataz L., Sartori M., Wagner A., Monaghan M.T., Toward a DNA taxonomy of alpine Rhithrogena (Ephemeroptera: Heptageniidae) using a mixed Yule-coalescent analysis of mitochondrial and nuclear DNA, PloS One, 2011, 6 (5), e19728Google Scholar

  • [25] Eigenmann C.H., Eigenmann R.S., Preliminary notes on South American Nematognathi. I. Proc. Calif. Acad. Sci., 1888, 2, 119-72Google Scholar

  • [26] Langeani F., Revisão do gênero Neoplecostomus, com a descrição de quatro espécies novas do sudeste brasileiro (Ostariophysi, Siluriformes, Loricariidae). Comum. Mus. Ciênc. PUCRS, Sér. Zool., 1990, 3, 3-31Google Scholar

  • [27] Roxo F.F., Zawadzki C.H., Alexandrou M.A., Costa-Silva G.J., Chiachio M.C., Foresti F., Oliveira C., Evolutionary and biogeographic history of the subfamily Neoplecostominae (Siluriformes: Loricariidae), Ecol. Evol., 2012b, 2 (10), 2438-2449Google Scholar

  • [28] Roxo F.F., Albert J.S., Silva G.S., Zawadzki C.H., Foresti F., Oliveira C., Molecular Phylogeny and Biogeographic History of the Armored Neotropical Catfish Subfamilies Hypoptopomatinae, Neoplecostominae and Otothyrinae (Siluriformes: Loricariidae), PloS One, 2014, 9 (8), e105564Google Scholar

  • [29] Bizerril C.R.S.F., Descrição de uma nova espécie de Neoplecostomus (Loricariidae, Neoplecostominae) com uma sinópse da composição taxonômica dos Loricariidae no leste brasileiro, Arq. Biol. Tec., 1995, 38, 693-704Google Scholar

  • [30] Zawadzki C.H., Pavanelli C.S., Langeani F., Neoplecostomus (Teleostei: Loricariidae) from the upper Rio Paraná basin, Brazil, with description of three new species, Zootaxa, 2008, 1757, 31-48Google Scholar

  • [31] Zawadzki C.H., Alves A.L., Renesto E., Oliveira C., Biochemical evidence of a possible new species of Neoplecostomus (Teleostei: Loricariidae) from the upper Rio Paraná basin, Brazil, Biochemical Syst. Ecol., 2004, 32, 573-582Google Scholar

  • [32] Philippsen J.S., Renesto E., Gealh A.M., Artoni R.F., Shibatta O.A., Zawadzki C.H., Genetic variability in four samples of Neoplecostomus yapo (Teleostei: Loricariidae) from the Rio Paranapanema basin, Brazil, Neot. Ichth., 2009, 7, 25-30Google Scholar

  • [33] Reusing A.F., Renesto E., Roxo F.F., Zawadzki C.H., Allozyme differentiation of two populations of the genus Neoplecostomus Eigenmann & Eigenmann, 1888 (Teleostei: Loricariidae) from the upper Rio Paraná, Brazil, Genet. Mol. Biol., 2011, 34, 496-501Google Scholar

  • [34] Drummond A., Ashton B., Buxton S., Cheung M., Cooper A., et al., Geneious, Book Geneious, 2010Google Scholar

  • [35] Edgar R.C., Muscle: a multiple sequence alignment method with reduced time and space complexity, BMC Bioinform., 2004, 5, 1-19Google Scholar

  • [36] Tamura K., Stecher G., Peterson D., Filipski A., Kumar S., MEGA6: molecular evolutionary genetics analysis version 6.0., Mol. Biol. Evol., 2013, 30 (12), 2725-2729Google Scholar

  • [37] Xia X., Xie Z., Salemi M., Chen L., Wang Y., An index of substitution saturation and its application, Mol. Phyl. Evol., 2003, 26, 1-7CrossrefGoogle Scholar

  • [38] Xia X., Xie Z., Dambe: Data analysis in molecular biology and evolution, J. Hered., 2001, 92, 371-373CrossrefGoogle Scholar

  • [39] Xia X., Lemey P., Assessing substitution saturation with DAMBE, In: Lemey P., Salemi M., Vandamme A.M. (Eds.), The Phylogenetic Handbook: A Practical Approach to DNA and Protein Phylogeny, Cambridge University Press, pp. 615-630, 2009Google Scholar

  • [40] Drummond A.J., Ho S.Y.M., Phillips M.J., Rambaut A., Relaxed phylogenetics and dating with confidence, Plos Biol., 2006, 4, e88CrossrefGoogle Scholar

  • [41] Drummond A., Rambaut A., BEAST: Bayesian evolutionary analysis by sampling trees, BMC Evol. Biol., 2007, 7, 1-8Google Scholar

  • [42] Bergsten J., Nilsson A., Ronquist F., Bayesian teste of Topology Hypotheses with an Example from Diving Beetles, Syst. Biol., 2013, 62 (5), 660-73CrossrefGoogle Scholar

  • [43] Rambaut A., Drummond A.J., Tracer v1.4., 2007a, http://beast. bio.ed.ac.uk/Tracer.Google Scholar

  • [44] Rambaut A., Drummond A.J., TreeAnnotator v1.4.8., 2007b, http://beast.bio.ed.ac.uk/TreeAnnotatorGoogle Scholar

  • [45] R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2013, http://www.R-project.org/Google Scholar

  • [46] Bremer K, Wanntorp H.E., Geographic populations or biological species in phylogeny reconstruction, Syst. Zool., 1979, 28, 220-224CrossrefGoogle Scholar

  • [47] Cracraft J. Species concepts and speciation analysis, Curr. Ornithol., 1983, 1, 159-187CrossrefGoogle Scholar

  • [48] Zink R.M., Bird species diversity, Nature, 1996, 381, 566Google Scholar

  • [49] De Queiroz K. The general lineage concept of species, species criteria, and the process of speciation: A conceptual unification and terminological recommendations, In: Howard D.J., Berlocher S.H. (Eds.), Species and speciation, Oxford University Press, New York, pp. 57-75, 1998 Google Scholar

  • [50] Harrison R.G. Linking evolutionary pattern and process, In: Howard D.J., Berlocher S.H. (Eds.), Species and speciation, Oxford University Press, New York, pp. 19-31, 1998Google Scholar

  • [51] Hudson R.R., Coyne J.A. Mathematical consequences of the genealogical species concept. Evolution, 2002, 56, 1557-1565CrossrefGoogle Scholar

  • [52] Astrin J.J., Stüben P.E., Misof B., Wägele W., Gimnich F., Raupach M.J., Ahrens D. Exploring diversity in cryptorhynchine weevils (Coleoptera) using distance-, character- and tree-based species delineation, Mol. Phyl. Evol., 2012, 63, 1-14CrossrefGoogle Scholar

  • [53] Knowles L.L., Carstens BC., Delimiting species without monophyletic gene trees, Syst. Biol., 2007, 56, 887-895.CrossrefGoogle Scholar

  • [54] Dupuis J.R., Roe A.D., Sperling F.A.H., Multi-locus species delimitation in closely related animals and fungi: one marker is not enough, Mol. Ecol., 2012, 21, 4422-4436 CrossrefGoogle Scholar

  • [55] Hailer F., Kutschera V.E., Hallstrom B.M., Klassert D., Fain S.R., Leonard J.A., Arnason U., Janke A., Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage, Science, 2012, 336, 344-347Google Scholar

  • [56] Will K.W., Rubinoff D., Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics, 2004, 20, 47-55CrossrefGoogle Scholar

  • [57] Avise J.C., Phylogeography: retrospect and prospect, J. Biogeog., 2009, 36, 3-15 Google Scholar

About the article

Received: 2015-01-24

Accepted: 2015-07-09

Published Online: 2015-11-26

Published in Print: 2015-01-01

Citation Information: DNA Barcodes, Volume 3, Issue 1, Pages 110–117, ISSN (Online) 2299-1077, DOI: https://doi.org/10.1515/dna-2015-0014.

Export Citation

© 2015. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Camila S. Souza, Guilherme J. Costa-Silva, Fábio F. Roxo, Fausto Foresti, and Claudio Oliveira
Frontiers in Genetics, 2018, Volume 9
Ana C. Prizon, Daniel P. Bruschi, Luciana A. Borin-Carvalho, Andréa Cius, Ligia M. Barbosa, Henrique B. Ruiz, Claudio H. Zawadzki, Alberto S. Fenocchio, and Ana L. de Brito Portela-Castro
Frontiers in Genetics, 2017, Volume 8
Juliana Fachinetto, Eliane Kaltchuk-Santos, Camila Dellanhese Inácio, Lilian Eggers, and Tatiana T. de Souza-Chies
Plant Species Biology, 2017
Kuo-Wei Hung, Barry C. Russell, and Wei-Jen Chen
Zoologica Scripta, 2017, Volume 46, Number 5, Page 536
Alexandre P. Marceniuk, Raquel Siccha-Ramirez, Ronaldo Borges Barthem, and Wolmar Benjamin Wosiacki
Systematics and Biodiversity, 2017, Volume 15, Number 3, Page 274

Comments (0)

Please log in or register to comment.
Log in