Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

DNA Barcodes

Ed. by Mitchell, Andrew

1 Issue per year

Emerging Science

Open Access
See all formats and pricing
In This Section

Fishing for barcodes in the Torrent: from COI to complete mitogenomes on NGS platforms

Damien D. Hinsinger
  • Institut de Systématique, Évolution, Biodiversité ISYEB, UMR 7205 CNRS, MNHN, UPMC, EPHE Muséum national d’Histoire naturelle, Sorbonne Universités. 57 rue Cuvier, CP30, 75005 Paris, France
/ Regis Debruyne
  • Outils et Méthodes de la Systématique Intégrative, UMS 2700, MNHN, CNRS, Muséum national d’Histoire naturelle, Sorbonne Universités. 57 rue Cuvier, CP26, 75005 Paris, France
/ Maeva Thomas
  • Unité Biologie des organismes et écosystèmes aquatiques (BOREA, UMR 7208), Sorbonne Universités, Muséum national d’Histoire naturelle, Université Pierre et Marie Curie, Université de Caen Basse-Normandie, CNRS, IRD, 57 rue Cuvier, CP26, 75005 Paris, France
/ Gaël P. J. Denys
  • Unité Biologie des organismes et écosystèmes aquatiques (BOREA, UMR 7208), Sorbonne Universités, Muséum national d’Histoire naturelle, Université Pierre et Marie Curie, Université de Caen Basse-Normandie, CNRS, IRD, 57 rue Cuvier, CP26, 75005 Paris, France
/ Marion Mennesson
  • Unité Biologie des organismes et écosystèmes aquatiques (BOREA, UMR 7208), Sorbonne Universités, Muséum national d’Histoire naturelle, Université Pierre et Marie Curie, Université de Caen Basse-Normandie, CNRS, IRD, 57 rue Cuvier, CP26, 75005 Paris, France
/ Jose Utage
  • Outils et Méthodes de la Systématique Intégrative, UMS 2700, MNHN, CNRS, Muséum national d’Histoire naturelle, Sorbonne Universités. 57 rue Cuvier, CP26, 75005 Paris, France
/ Agnes Dettai
  • Corresponding author
  • Institut de Systématique, Évolution, Biodiversité ISYEB, UMR 7205 CNRS, MNHN, UPMC, EPHE Muséum national d’Histoire naturelle, Sorbonne Universités. 57 rue Cuvier, CP30, 75005 Paris, France
  • Email:
Published Online: 2015-11-26 | DOI: https://doi.org/10.1515/dna-2015-0019


The adoption of Next-Generation Sequencing (NGS) by the field of DNA barcoding of Metazoa has been hindered by the fit between the classical COI barcode and the Sanger-based sequencing method. Here we describe a framework for the sequencing and multiplexing of mitogenomes on NGS platforms that implements (I) a universal long-range PCR-based amplification technique, (II) a two-level multiplexing approach (i.e. divergence-based and specific tag indexing), and (III) a dedicated demultiplexing and assembling script from an Ion Torrent sequencing platform. We provide a case study of mitogenomes obtained for two vouchered individuals of daces Leuciscus burdigalensis and L. oxyrrhis and show that this workflow enables to recover over 100 mitogenomes per sequencing chip on a PGM sequencer, bringing the individual cost down below 7,50€ per mitogenome (as of current 2015 sequencing costs). The use of several kilobases for identification purposes, as involved in the improved DNA-barcode we propose, stress the need for data reliability, especially through metadata. Based on both scientific and economic considerations, this framework presents a relevant approach for multiplexing samples, adaptable on any desktop NGS platform. It enables to extend from the prevalent barcoding approach by shifting from the single COI to complete mitogenome sequencing

This article offers supplementary material which is provided at the end of the article.

Keywords: DNA barcoding; mitogenome assembly; Next- Generation Sequencing; sample multiplexing; sequence post-processing


  • [1] Hebert P.D.N., Cywinska A., Ball S.L., deWaard J.R., Biological identifications through DNA barcodes, Proc. Biol. Sci., 2003, 270, 313-21

  • [2] Ward R.D., Zemlak T.S., Innes B.H., Last P.R., Hebert P.D.N., DNA barcoding Australia’s fish species, Philos. Trans. R. Soc. Lond. B Biol. Sci., 2005, 360, 1847-57

  • [3] Ward R.D., Hanner R., Hebert P.D.N., The campaign to DNA barcode all fishes, FISH-BOL, J. Fish Biol., 2009, 74, 329-56 [Crossref]

  • [4] Becker S., Hanner R., Steinke D., Five years of FISH-BOL: brief status report, Mitochondrial DNA, 2011, 22 Suppl 1, 3-9

  • [5] Ratnasingham S., Hebert P.D.N., BOLD: The Barcode of Life Data System (http://www.barcodinglife.org), Mol. Ecol. Notes., 2007, 7, 355-64 [Crossref]

  • [6] Hanner R., Data standards for BARCODE records in INSDC (BRIs). 2009. http://www.barcoding.si.edu/PDF/ Guidelines%20for%20non-CO1%20selection%20FINAL.pdf

  • [7] Strohm J.H.T., Gwiazdowski R.A., Hanner R., Mitogenome metadata: current trends and proposed standards, Mitochondrial DNA.\, 2015, 1-7 [Crossref]

  • [8] Garcia-Vasquez E., Perez J., Martinez J.L., Pardinas A.F., Lopez B., Karaiskou N., et al., High level of mislabeling in spanish and greek hake markets suggests the fraudulent introduction of African species, J. Agric. Food Chem., 2011, 59, 475-80 [Crossref]

  • [9] Von der Heyden S., Barendse J., Seebregts A.J., Matthee C.A., Misleading the masses: detection of mislabeled and substituted frozen fish products in South Africa, ICES J. Mar. Sci., 2010, 176-85

  • [10] Naylor G.J.P., Caira J.N., Jensen K., Rosana K.A.M., White W.T., Last P.R., A DNA sequence-based approach to the identification of shark and ray species and its implications for global elasmobranch diversity and parasitology, Bull. Am. Mus. Nat. Hist., 2012, 2012

  • [11] Dettai A., Adamowizc S.J., Allcock L., Arango C.P., Barnes D.K.A., Barratt I., et al., DNA barcoding and molecular systematics of the benthic and demersal organisms of the CEAMARC survey, Polar Sci., 2011, 5, 298-312 [Crossref]

  • [12] Pompanon F., Samadi S., Next generation sequencing for characterizing biodiversity: promises and challenges, Genetica., 2015, 143, 133-8 [Crossref]

  • [13] Taylor H.R., Harris W.E., An emergent science on the brink of irrelevance: a review of the past 8 years of DNA barcoding, Mol. Ecol. Resour., 2012, 12, 377-88 [Crossref]

  • [14] Dowton M., Meiklejohn K., Cameron S.L., Wallman J., A preliminary framework for DNA barcoding, incorporating the multispecies coalescent, Syst. Biol., 2014, 63, 639-44 [Crossref]

  • [15] Collins R.A., Cruickshank R.H., Known Knowns, Known Unknowns, Unknown Unknowns and Unknown Knowns in DNA Barcoding: A Comment on Dowton et al., Syst. Biol., 2014, 63, 1005-9 [Crossref]

  • [16] Timmermans M.J.T.N., Dodsworth S., Culverwell C.L., Bocak L., Ahrens D., Littlewood D.T.J., et al., Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics, Nucleic Acids Res., 2010, 38, e197 [Crossref]

  • [17] Dettai A., Gallut C., Brouillet S., Pothier J., Lecointre G., Debruyne R., Conveniently Pre-Tagged and Pre-Packaged: Extended Molecular Identification and Metagenomics Using Complete Metazoan Mitochondrial Genomes, PLoS One, 2012, 7, e51263

  • [18] Tang M., Tan M., Meng G., Yang S., Su X., Liu S., et al., Multiplex sequencing of pooled mitochondrial genomes-a crucial step toward biodiversity analysis using mito-metagenomics, Nucleic Acids Res., 2014, gku917

  • [19] Meyer M., Stenzel U., Hofreiter M., Parallel tagged sequencing on the 454 platform, Nat. Protoc., 2008, 3, 267-78 [Crossref]

  • [20] Bybee S.M., Bracken-Grissom H., Haynes B.D., Hermansen R.A., Byers R.L., Clement M.J., et al., Targeted amplicon sequencing (TAS): a scalable next-gen approach to multilocus, multitaxa phylogenetics, Genome Biol. Evol., 2011, 3, 1312-23 [Crossref]

  • [21] Feutry P., Kyne P.M., Pillans R.D., Chen X., Naylor G.J., Grewe P.M., Mitogenomics of the Speartooth Shark challenges ten years of control region sequencing, BMC Evol. Biol., 2014, 14, 232 [Crossref]

  • [22] Shendure J., Ji H., Next-generation DNA sequencing, Nat. Biotechnol., 2008, 26, 1135-45 [Crossref]

  • [23] Pollock D.D., Eisen J.A., Doggett N.A., Cummings M.P., A case for evolutionary genomics and the comprehensive examination of sequence biodiversity, Mol. Biol. Evol., 2000, 17, 1776-88 [Crossref]

  • [24] Rubinstein N.D., Feldstein T., Shenkar N., Botero-Castro F., Griggio F., Mastrototaro F., et al., Deep Sequencing of Mixed Total DNA without Barcodes Allows Efficient Assembly of Highly Plastic Ascidian Mitochondrial Genomes, Genome Biol. Evol., 2013, 5, 1185-99 [Crossref]

  • [25] Hahn C., Bachmann L., Chevreux B., Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads-a baiting and iterative mapping approach, Nucleic Acids Res., 2013, gkt371

  • [26] Smith D.R., The past, present and future of mitochondrial genomics: have we sequenced enough mtDNAs?, Brief. Funct. Genomics, 2015, elv027

  • [27] Chang Y.S., Huang F.L., Lo T.B., The complete nucleotide sequence and gene organization of carp (Cyprinus carpio) mitochondrial genome, J. Mol. Evol., 1994, 38, 138-55 [Crossref]

  • [28] Miya M., Kawaguchi A., Nishida M., Mitogenomic exploration of higher teleostean phylogenies: a case study for moderate-scale evolutionary genomics with 38 newly determined complete mitochondrial DNA sequences, Mol. Biol. Evol., 2001, 18, 1993-2009

  • [29] Miya M., Nishida M., The mitogenomic contributions to molecular phylogenetics and evolution of fishes: a 15-year retrospect, Ichthyol Res., 2015, 62, 29-71

  • [30] Iwasaki W., Fukunaga T., Isagozawa R., Yamada K., Maeda Y., Satoh T.P., et al., MitoFish and MitoAnnotator: a mitochondrial genome database of fish with an accurate and automatic annotation pipeline, Mol. Biol. Evol., 2013, 30, 2531-40 [Crossref]

  • [31] Botero-Castro F., Delsuc F., Douzery E.J.P., Thrice better than once: quality control guidelines to validate new mitogenomes, Mitochondrial DNA, 2014

  • [32] Dupuis J.R., Roe A.D., Sperling F.H., Multi-locus species delimitation in closely related animals and fungi: one marker is not enough, Mol. Ecol., 2012, 21, 4422-36 [Crossref]

  • [33] Papadopoulou A., Anastasiou I., Vogler A.P., Revisiting the Insect Mitochondrial Molecular Clock: The Mid-Aegean Trench Calibration, Mol. Biol. Evol., 2010, 27, 1659-72 [Crossref]

  • [34] Li H., Shao R., Song N., Song F., Jiang P., Li Z., et al., Higher-level phylogeny of paraneopteran insects inferred from mitochondrial genome sequences, Sci. Rep., 2015, 5

  • [35] Kane N., Sveinsson S., Dempewolf H., Yang JY., Zhang D., Engels J.M.M., et al., Ultra-barcoding in cacao (Theobroma spp.; Malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA, Am. J. Bot., 2012, 99, 320-9 [Crossref]

  • [36] Thompson J.D., Higgins D.G., Gibson T.J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res., 1994, 22, 4673-80 [Crossref]

  • [37] Kocher T.D., Thomas W.K., Meyer A., Edwards S.V., Pääbo S., Villablanca F.X., et al., Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers, Proc. Natl. Acad. Sci. USA, 1989, 86, 6196-200 [Crossref]

  • [38] Schulz M.H., Zerbino D.R., Vingron M., Birney E., Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels, Bioinforma. Oxf. Engl., 2012, 28, 1086-92 [Crossref]

  • [39] Luo R., Liu B., Xie Y., Li Z., Huang W., Yuan J., et al., SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler, GigaScience, 2012, 1, 18

  • [40] Chevreux B., Wetter T., Suhai S., Genome Sequence Assembly Using Trace Signals and Additional Sequence Information., Comput. Sci. Biol. Proc. Ger. Conf. Bioinforma, GCB 99., 1999, 45-56

  • [41] Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J., Basic local alignment search tool, J Mol Biol., 1990, 215, 403-10

  • [42] Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., et al., Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data, Bioinforma. Oxf. Engl., 2012, 28, 1647-9 [Crossref]

  • [43] Goecks J., Nekrutenko A., Taylor J., Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences, Genome Biol., 2010, 11, R86

  • [44] Kottelat M., Freyhof J., Handbook of European freshwater fishes. Publications Kottelat., Berlin: Kottelat, Cornal &Freyhof;, 2007.

  • [45] Winnepenninckx B., Backeljau T., De Wachter R., Extraction of high molecular weight DNA from molluscs, Trends Genet., 1993, 9, 407

  • [46] Geiger M.F., Herder F., Monaghan M.T., Almada V., Barbieri R., Bariche M., et al., Spatial heterogeneity in the Mediterranean Biodiversity Hotspot affects barcoding accuracy of its freshwater fishes, Mol. Ecol. Resour., 2014, 14, 1210-21 [Crossref]

  • [47] Edgar R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res., 2004, 32, 1792-7 [Crossref]

  • [48] Costedoat C., Chappaz R., Barascud B., Guillard O., Gilles A., Heterogeneous colonization pattern of European Cyprinids, as highlighted by the dace complex (Teleostei: Cyprinidae), Mol. Phylogenet. Evol., 2006, 41

  • [49] Wang F., Niu J., Hu S., Xie P., Liu C., Li H., et al., The complete mitochondrial genome of Leuciscus idus (Cypriniformes: Cyprinidae), Mitochondrial DNA., 2014

  • [50] Jun G Inoue M.M., Complete mitochondrial DNA sequence of the Japanese eel Anguilla japonica, Fish. Sci., 2001, 67, 118-25

  • [51] Kawaguchi A., Miya M., Nishida M., Complete mitochondrial DNA sequence of Aulopus japonicus (Teleostei: Aulopiformes), a basal Eurypterygii: longer DNA sequences and higher-level relationships, Ichthyol. Res., 2001, 48, 213-23 [Crossref]

  • [52] Kim I.-C., Kweon H.-S., Kim Y.J., Kim C.-B., Gye M.C., Lee W.-O., et al., The complete mitochondrial genome of the javeline goby Acanthogobius hasta (Perciformes, Gobiidae) and phylogenetic considerations, Gene, 2004, 336, 147-53 [Crossref]

  • [53] Miya M., Nishida M., Organization of the Mitochondrial Genome of a Deep-Sea Fish, Gonostoma gracile (Teleostei: Stomiiformes): First Example of Transfer RNA Gene Rearrangements in Bony Fishes, Mar. Biotechnol. N. Y. N., 1999, 1, 416-0426 [Crossref]

  • [54] Poulsen J.Y., Byrkjedal I., Willassen E., Rees D., Takeshima H., Satoh T.P., et al., Mitogenomic sequences and evidence from unique gene rearrangements corroborate evolutionary relationships of myctophiformes (Neoteleostei), BMC Evol. Biol., 2013, 13, 111 [Crossref]

  • [55] Dohm J., Lottaz C., Borodina T., Himmelbauer H., Substantial biases in ultra-short read data sets from high-throughput DNA sequencing, Nucleic Acids Res., 2008, 36

  • [56] Ross M.G., Russ C., Costello M., Hollinger A., Lennon N.J., Hegarty R., et al., Characterizing and measuring bias in sequence data, Genome Biol., 2013, 14, R51

  • [57] Zhuang X., Cheng C.H., ND6 gene “lost” and found: evolution of mitochondrial gene rearrangement in Antarctic notothenioids, Mol. Biol. Evol., 2010, 27, 1391-403

  • [58] Antunes A., Ramos M.J., Discovery of a large number of previously unrecognized mitochondrial pseudogenes in fish genomes, Genomics, 2005, 86, 708-17 [Crossref]

  • [59] Venkatesh B., Dandona N., Brenner S., Fugu genome does not contain mitochondrial pseudogenes, Genomics, 2006, 87, 307-10 [Crossref]

  • [60] Hazkani-Covo E., Zeller R.M., Martin W., Molecular Poltergeists: Mitochondrial DNA Copies (numts) in Sequenced Nuclear Genomes, PLoS Genet., 2010, 6, e1000834 [Crossref]

  • [61] Zhang J., Hanner R., Molecular Approach to the Identification of Fish in the South China Sea, PLoS One, 2012, 7, e30621

  • [62] Kawahara R., Miya M., Mabuchi K., Near TJ., Nishida M., Stickleback phylogenies resolved: evidence from mitochondrial genomes and 11 nuclear genes, Mol. Phylogenet. Evol., 2009, 50, 401-4

  • [63] Sorenson M.D., Quinn T.W., Numts: A challenge for avian systematics and population biology, The Auk, 1998, 115, 214-21

  • [64] Collura R.V., Stewart C.B., Insertions and duplications of mtDNA in the nuclear genomes of Old World monkeys and hominoids, Nature, 1995, 378, 485-9 [Crossref]

  • [65] Sato A., O’hUigin C., Figueroa F., Grant P.R., Grant B.R., Tichy H., et al., Phylogeny of Darwin’s finches as revealed by mtDNA sequences, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 5101-6 [Crossref]

  • [66] Hwang U.W., Park C.J., Yong T.S., Kim W., One-step PCR amplification of complete arthropod mitochondrial genomes, Mol. Phylogenet. Evol., 2001, 19, 345-52 [Crossref]

  • [67] Pons J., Bauzà-Ribot M.M., Jaume D., Juan C., Next-generation sequencing, phylogenetic signal and comparative mitogenomic analyses in Metacrangonyctidae (Amphipoda: Crustacea), BMC Genomics, 2014, 15, 566 [Crossref]

  • [68] Green R.E., Malaspinas A.-S., Krause J., Briggs A.W., Johnson P.L.F., Uhler C., et al., A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing, Cell, 2008, 134, 416-26 [Crossref]

  • [69] Tsai I., Otto T., Berriman M., Improving draft assemblies by iterative mapping and assembly of short reads to eliminate gaps, Genome Biol., 2010, 11, R41

  • [70] Dettai A., Lecointre G., New insights into the organization and evolution of vertebrate IRBP genes and utility of IRBP gene sequences for the phylogenetic study of the Acanthomorpha (Actinopterygii: Teleostei), Mol. Phylogenet. Evol., 2008, 48, 258-69 [Crossref]

  • [71] Carr S.M., Marshall H.D., Intraspecific Phylogeographic Genomics From Multiple Complete mtDNA Genomes in Atlantic Cod (Gadus morhua): Origins of the “Codmother,” Transatlantic Vicariance and Midglacial Population Expansion, Genetics, 2008, 180, 381-9 [Crossref]

  • [72] Dettai A., Lautredou A.-C., Bonillo C., Goimbault E., Busson F., Causse R., et al., The actinopterygian diversity of the CEAMARC cruises: Barcoding and molecular taxonomy as a multi-level tool for new findings, Deep Sea Res. Part II Top. Stud. Oceanogr., 2011, 58, 250-63 [Crossref]

  • [73] Rokas A., Carroll S.B., More genes or more taxa? The relative contribution of gene number and taxon number to phylogenetic accuracy, Mol. Biol. Evol., 2005, 22, 1337-44 [Crossref]

  • [74] Miya M., Friedman M., Satoh T.P., Takeshima H., Sado T., Iwasaki W., et al., Evolutionary Origin of the Scombridae (Tunas and Mackerels): Members of a Paleogene Adaptive Radiation with 14 Other Pelagic Fish Families, PLoS ONE., 2013, 8, e73535

  • [75] April J., Mayden R.L., Hanner R.H., Bernatchez L., Genetic calibration of species diversity among North America’s freshwater fishes, Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 10602-7 [Crossref]

  • [76] Denys G.P.J., Dettai A., Persat H., Hautecoeur M., Keith P., Morphological and molecular evidence of three species of pikes Esox spp. (Actinopterygii, Esocidae) in France, including the description of a new species, C. R. Biol., 2014, 337, 521-34

  • [77] Knebelsberger T., Dunz A.R., Neumann D., Geiger M.F., Molecular diversity of Germany’s freshwater fishes and lampreys assessed by DNA barcoding, Mol. Ecol. Resour., 2014

  • [78] Hubert N., Hanner R., Holm E., Mandrak N.E., Taylor E., Burridge M., et al., Identifying Canadian freshwater fishes through DNA barcodes, PloS One., 2008, 3, e2490

  • [79] Brodersen J., Seehausen O., Why evolutionary biologists should get seriously involved in ecological monitoring and applied biodiversity assessment programs, Evol. Appl., 2014, 7, 968-83 [Crossref]

  • [80] Padial JM., Miralles A., De la Riva I., Vences M., The integrative future of taxonomy, Front. Zool., 2010, 7, 1-16

  • [81] Karp P.D., What we do not know about sequence analysis and sequence databases, Bioinformatics, 1998, 14, 753-4 [Crossref]

  • [82] Funk D.J., Omland K.E., Species level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA, Annu. Rev. Ecol. Evol. Syst., 2003, 34, 397-423 [Crossref]

About the article

Received: 2015-03-31

Accepted: 2015-09-08

Published Online: 2015-11-26

Published in Print: 2015-01-01

Citation Information: DNA Barcodes, ISSN (Online) 2299-1077, DOI: https://doi.org/10.1515/dna-2015-0019. Export Citation

© 2015. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in