Jump to ContentJump to Main Navigation
Show Summary Details
More options …

DNA Barcodes

Ed. by Mitchell, Andrew

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2299-1077
See all formats and pricing
More options …

The applicability of DNA barcoding for dietary analysis of sika deer

Fumiko Nakahara / Haruko Ando
  • Corresponding author
  • Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hideyuki Ito / Asako Murakami / Naoki Morimoto / Michimasa Yamasaki
  • Laboratory of Forest Biology, Division of Forest an Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Atsushi Takayanagi
  • Laboratory of Forest Biology, Division of Forest an Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yuji Isagi
  • Laboratory of Forest Biology, Division of Forest an Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-11-26 | DOI: https://doi.org/10.1515/dna-2015-0021

Abstract

In Japan, overgrazing by sika deer (Cervus nippon) has been suggested to cause a decline in forest understory vegetation. DNA barcoding has become an accepted method for analyzing the diets of animals and may be useful for evaluating the impact of sika deer on vegetation. However, the applicability of DNA barcoding in the dietary analysis of sika deer, particularly whether all of the food plants can be detected with sufficient taxonomic resolution and whether the results can be evaluated quantitatively, has not been investigated. We conducted a feeding trial by feeding five plant species to a captive sika deer and sequenced the chloroplast trnL P6 loop region from the sika deer’s fecal DNA using the Ion PGM sequencer. We detected the sequences of all of the food plants at the species level using the local (selfproduced) database and at the genus or family level with the global database. Although the sequences of some major food plants were detected with high frequency, the proportion of consumed food plants did not match the proportion of sequences obtained from fecal DNA. With further technical advances and the further completeness of the sequence database for vegetation, DNA barcoding will be a useful tool for the dietary study of sika deer.

Keywords: Cervus nippon; feeding trial; high-throughput sequencing; trnL P6 loop

References

  • [1] Shelton A.L., Henning J.A., Schultz P., Clay K., Effects of abundant white-tailed deer on vegetation, animals, mycorrhizal fungi, and soils, Forest. Ecol. Manag., 2014, 320, 39-49Web of ScienceCrossrefGoogle Scholar

  • [2] Dexter N., Hudson M., James S., MacGregor C., Lindenmayer D.B., Unintended Consequences of Invasive Predator Control in an Australian Forest: Overabundant Wallabies an Vegetation Change, PLoS One, 2013, 8, e69087Web of ScienceGoogle Scholar

  • [3] Chalukian S.C., de Bustos M.S., Lizarraga R.L., Diet of lowland tapir (Tapirus terrestris) in El Rey National Park, Salta, Argentina, Integr. Zool., 2013, 8, 48-56Web of ScienceGoogle Scholar

  • [4] Redjadj C., Darmon G., Maillard D., Chevrier T., Bastianelli D., Verheyden H., et al., Intra- and Interspecific Differences in Diet Quality and Composition in a Large Herbivore Community, PLoS One, 2014, 9, e84756Google Scholar

  • [5] Landman M., Schoeman D.S., Kerley G.I.H.,Shift in Black Rhinoceros Diet in the Presence of Elephant: Evidence for Competition?, PLoS One, 2013, 8, e69771Web of ScienceGoogle Scholar

  • [6] Nichols R.V., Konigsson H., Dannel K., Spong G., Browsed twig environmental DNA: diagnostic PCR to identify ungulate species, Mol. Ecol. Resour., 2012, 12, 983-989Web of ScienceCrossrefGoogle Scholar

  • [7] Raye´ G., Miquel C., Coissac E., Redjadj C., Loison A., Taberlet P., New insights on diet variability revealed by DNA barcoding and high-throughput pyrosequencing: chamois diet in autumn as a case study, Ecol. Res., 2011, 26, 265-276CrossrefWeb of ScienceGoogle Scholar

  • [8] Newmaster, S.G., Thompson I.D., Steeves R.A.D., Rodgers A.R., Fazekas A.J., Maloles J.R., McMullin R.T., Examination of two new technologies to assess the diet of woodland caribou: video recorders attached to collars and DNA barcoding, Can. J. Forest Res., 2013, 43, 897-900CrossrefWeb of ScienceGoogle Scholar

  • [9] Takatsuki S., Ecological History of Sika Deer, Tokyo University Press, Tokyo, 2006 (in Japanese)Google Scholar

  • [10] Cote S.D., Rooney T.P., Tremblay J.P., Dussault C., Waller D.M., Ecological impacts of deer overabundance, Annu. Rev. Ecol. Evol. Systemat., 2004, 35, 113-147CrossrefGoogle Scholar

  • [11] Ohashi H., Yoshikawa M., Oono K., Tanaka N., Hatase Y., Murakami Y., The Impact of Sika Deer on Vegetation in Japan: Setting Management Priorities on a National Scale, Environ. Manage., 2014, 54, 631-640Web of ScienceCrossrefGoogle Scholar

  • [12] Shibata E., Hino T., Ecology of Sika Deer and Forest Ecosystem of Mt. Ohdaigahara, Tokai University Press, Kanagawa, 2009 (in Japanese)Google Scholar

  • [13] Sakaguchi S., Fujiki D., Inoue M., Takayanagi A., Plant species diversity and community structure of old-growth beech forest in Kamitani, Ashiu, Kyoto. -Community structure and endangered plant species detected by gradsect network, For. Res. Kyoto, 2008, 77, 43-61Google Scholar

  • [14] Hu H., Ishikawa Y., Shiraki K., Wakahara T., Biligetu, Uchiyama Y., Influence of change of forest floor cover percentage on overland flow rate on beech forest slopes, J. Jpn. For. Sci., 2012, 94, 167-174Google Scholar

  • [15] Suzuki M., Miyashita T., Kabaya H., Ochiai K., Asada M., Tange T., Deer density affects ground-layer vegetation differently in conifer plantations and hardwood forests on the Boso Peninsula, Japan, Ecol. Res., 2008, 23, 151-158Web of ScienceCrossrefGoogle Scholar

  • [16] Taberlet P., Gielly L., Pautou G., Bouvet J., Universal primers for amplificatiions of three non-coding regions of chloroplast DNA, Plant Mol. Biol., 1991, 17, 1105-1109CrossrefGoogle Scholar

  • [17] Taberlet P., Coissac E., Pompanon F., Gielly L., Miquel C., Valentini A., et al., Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding, Nucl. Acids Res., 2007, 35, e14 Google Scholar

  • [18] Tanabe S.A., Toju H., Two New Computational Methods for Universal DNA Barcoding: A Benchmark Using Barcode Sequences of Bacteria, Archaea, Animals, Fungi, and Land Plants, PLoS One, 2013, 8, e76910Web of ScienceGoogle Scholar

  • [19] Hall A.T., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp. Ser., 1999, 41, 95-98Google Scholar

  • [20] Conesa A., Gotz S., Garcia-Gomez M.J., Terol J., Talon M., Robels M., Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research, Bioinformatics, 2005, 21, 3674-3676Google Scholar

  • [21] Ando H., Setsuko S., Horikoshi K., Suzuki H., Umehara S., Inoue-Murayama M. et al., Diet analysis by next-generation sequencing indicates the frequent consumption of introduced plants by the critically endangered red-headed wood pigeon (Columba janthina nitens) in oceanic island habitats, Ecol Evol, 2013, 3, 4057-4069Google Scholar

  • [22] Pawluczyk M., Weiss J., Links M. G., Aranguren M. E., Wilkinson M. D. Egea-Cortines M., Quantitative evaluation of bias in PCR amplification and next-generation sequencing derived from metabarcoding samples, Anal. Bioanal. Chemistry, 2015, 407, 1841-1848.Web of ScienceGoogle Scholar

  • [23] Demarais S., Jackley J.J., Stickland B.K., Varner L.W., In vitro digestibility of forages by coexisting deer species in Texas, Tex. J. Sci., 2003, 55, 175-182Google Scholar

  • [24] Deagle B.E., Chiaradia A., McInnes J., Jarman N.S., Pyrosequencing faecal DNA to determine diet of little penguins: is what goes in what comes out?, Conserv. Genet., 2010, 11, 2039-2048Web of ScienceCrossrefGoogle Scholar

  • [25] Quail M. A., Smith M., Coupland P., Otto T. D., Harris S. R., Connor T. R., et al., (2012). A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers, BMC Genomics, 2012, 13, 341.CrossrefGoogle Scholar

  • [26] Warnecke P. M., Stirzaker C., Melki J. R., Millar D. S., Paul C. L., Clark S. J.. Detection and measurement of PCR bias in quantitative methylation analysis of bisulphite-treated DNA, Nucleic Acids Res.. 1997, 25, 4422-4426CrossrefGoogle Scholar

  • [27] Pompanon F., Deagle B.E., Symondson W.O.C., Brown D.S., Jarman S.N., Taberlet P., Who is eating what: diet assessment using next generation sequencing, Mol. Ecol., 2012, 21, 1931-1950 CrossrefGoogle Scholar

About the article

Received: 2015-02-27

Accepted: 2015-10-01

Published Online: 2015-11-26

Published in Print: 2015-01-01


Citation Information: DNA Barcodes, ISSN (Online) 2299-1077, DOI: https://doi.org/10.1515/dna-2015-0021.

Export Citation

© 2015. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Eeva M. Soininen, Lucie Zinger, Ludovic Gielly, Nigel G. Yoccoz, John-Andre Henden, and Rolf A. Ims
Polar Biology, 2017
[2]
Haruko Ando, Tetsuro Sasaki, Kazuo Horikoshi, Hajime Suzuki, Hayato Chiba, Michimasa Yamasaki, and Yuji Isagi
Pacific Science, 2017, Volume 71, Number 2, Page 161

Comments (0)

Please log in or register to comment.
Log in