Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Diagnosis

Official Journal of the Society to Improve Diagnosis in Medicine (SIDM)

Editor-in-Chief: Graber, Mark L. / Plebani, Mario

Ed. by Argy, Nicolas / Epner, Paul L. / Lippi, Giuseppe / Singhal, Geeta / McDonald, Kathryn / Singh, Hardeep / Newman-Toker, David

Editorial Board: Basso , Daniela / Crock, Carmel / Croskerry, Pat / Dhaliwal, Gurpreet / Ely, John / Giannitsis, Evangelos / Katus, Hugo A. / Laposata, Michael / Lyratzopoulos, Yoryos / Maude, Jason / Sittig, Dean F. / Sonntag, Oswald / Zwaan, Laura

Online
ISSN
2194-802X
See all formats and pricing
More options …

microRNA assays for acute coronary syndromes

Omid Shirvani Samani
  • Institute for Cardiomyopathies Heidelberg, Department of Cardiology, Angiology and Pulmology, University of Heidelberg, Heidelberg, Germany
  • DZHK (German Centre for Cardiovascular Research), Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Benjamin Meder
  • Corresponding author
  • Institute for Cardiomyopathies Heidelberg, Department of Cardiology, Angiology and Pulmology, University of Heidelberg, Heidelberg, Germany
  • DZHK (German Centre for Cardiovascular Research), Germany
  • Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-11-28 | DOI: https://doi.org/10.1515/dx-2016-0025

Abstract

microRNAs are promising biomarkers for diverse cardiovascular diseases. While quantification of the small non-coding RNAs is routinely performed in the research laboratory, clinical-grade assessment of microRNAs in central laboratory environments or point-of-care testing is still in its infancy. In this review, we provide an overview on microRNAs as biomarkers for acute coronary syndromes and highlight promising technical approaches for microRNA-based assays systems.

Keywords: acute coronary syndromes (ACS); assay; microRNA; troponin

References

  • 1.

    Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, et al. Third universal definition of myocardial infarction. J Am Coll Cardiol 2012;60:1581–98.PubMedCrossrefGoogle Scholar

  • 2.

    Giannitsis E, Kurz K, Hallermayer K, Jarausch J, Jaffe AS, Katus HA. Analytical validation of a high-sensitivity cardiac troponin T assay. Clin Chem 2010;56:254–61.CrossrefPubMedGoogle Scholar

  • 3.

    Reichlin T, Hochholzer W, Bassetti S, Steuer S, Stelzig C, Hartwiger S, et al. Early diagnosis of myocardial infarction with sensitive cardiac troponin assays. N Engl J Med 2009;361: 858–67.CrossrefPubMedGoogle Scholar

  • 4.

    Collinson PO, Stubbs PJ. Are troponins confusing? Heart 2003;89:1285–7.PubMedCrossrefGoogle Scholar

  • 5.

    Apple FS, Murakami MM, Pearce LA, Herzog CA. Predictive value of cardiac troponin I and T for subsequent death in end-stage renal disease. Circulation 2002;106:2941–5.CrossrefGoogle Scholar

  • 6.

    Korff S, Katus HA, Giannitsis E. Differential diagnosis of elevated troponins. Heart 2006;92:987–93.CrossrefPubMedGoogle Scholar

  • 7.

    Alpert JS, Thygesen K, Antman E, Bassand JP. Myocardial infarction redefined – a consensus document of the joint European society of cardiology/American college of cardiology committee for the redefinition of myocardial infarction. J Am Coll Cardiol 2000;36:959–69.CrossrefGoogle Scholar

  • 8.

    Lehrke S, Steen H, Sievers HH, Peters H, Opitz A, Muller-Bardorff M, et al. Cardiac troponin T for prediction of short- and long-term morbidity and mortality after elective open heart surgery. Clin Chem 2004;50:1560–7.CrossrefGoogle Scholar

  • 9.

    Nageh T, Sherwood RA, Harris BM, Thomas MR. Prognostic role of cardiac troponin I after percutaneous coronary intervention in stable coronary disease. Heart 2005;91:1181–5.PubMedCrossrefGoogle Scholar

  • 10.

    Okmen E, Kasikcioglu H, Sanli A, Uyarel H, Cam N. Correlations between cardiac troponin I, cardiac troponin T, and creatine phosphokinase MB elevation following successful percutaneous coronary intervention and prognostic value of each marker. J Invasive Cardiol 2005;17:63–7.PubMedGoogle Scholar

  • 11.

    Perna ER, Macin SM, Parras JI, Pantich R, Farias EF, Badaracco JR, et al. Cardiac troponin T levels are associated with poor short- and long-term prognosis in patients with acute cardiogenic pulmonary edema. Am Heart J 2002;143:814–20.CrossrefGoogle Scholar

  • 12.

    Fure B, Bruun Wyller T, Thommessen B. Electrocardiographic and troponin T changes in acute ischaemic stroke. J Intern Med 2006;259:592–7.CrossrefPubMedGoogle Scholar

  • 13.

    Barber M, Morton JJ, Macfarlane PW, Barlow N, Roditi G, Stott DJ. Elevated troponin levels are associated with sympathoadrenal activation in acute ischaemic stroke. Cerebrovasc Dis 2007;23:260–6.CrossrefPubMedGoogle Scholar

  • 14.

    Giannitsis E, Muller-Bardorff M, Kurowski V, Weidtmann B, Wiegand U, Kampmann M, et al. Independent prognostic value of cardiac troponin T in patients with confirmed pulmonary embolism. Circulation 2000;102:211–7.PubMedCrossrefGoogle Scholar

  • 15.

    Pruszczyk P, Bochowicz A, Torbicki A, Szulc M, Kurzyna M, Fijalkowska A, et al. Cardiac troponin T monitoring identifies high-risk group of normotensive patients with acute pulmonary embolism. Chest 2003;123:1947–52.CrossrefPubMedGoogle Scholar

  • 16.

    Bonnefoy E, Godon P, Kirkorian G, Chabaud S, Touboul P. Significance of serum troponin I elevation in patients with acute aortic dissection of the ascending aorta. Acta Cardiologica 2005;60:165–70.PubMedCrossrefGoogle Scholar

  • 17.

    Dierkes J, Domrose U, Westphal S, Ambrosch A, Bosselmann HP, Neumann KH, et al. Cardiac troponin T predicts mortality in patients with end-stage renal disease. Circulation 2000;102:1964–9.PubMedCrossrefGoogle Scholar

  • 18.

    Edouard AR, Felten ML, Hebert JL, Cosson C, Martin L, Benhamou D. Incidence and significance of cardiac troponin I release in severe trauma patients. Anesthesiology 2004;101:1262–8.PubMedGoogle Scholar

  • 19.

    Collins JN, Cole FJ, Weireter LJ, Riblet JL, Britt LD. The usefulness of serum troponin levels in evaluating cardiac injury. Am Surg 2001;67:821–5; discussion 825–6.PubMedGoogle Scholar

  • 20.

    Dispenzieri A, Kyle RA, Gertz MA, Therneau TM, Miller WL, Chandrasekaran K, et al. Survival in patients with primary systemic amyloidosis and raised serum cardiac troponins. Lancet 2003;361:1787–9.CrossrefPubMedGoogle Scholar

  • 21.

    Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation 2004;109:2749–54.PubMedCrossrefGoogle Scholar

  • 22.

    Missov E, Mair J. A novel biochemical approach to congestive heart failure: cardiac troponin T. Am Heart J 1999;138(1 Pt 1):95–9.PubMedCrossrefGoogle Scholar

  • 23.

    Setsuta K, Seino Y, Takahashi N, Ogawa T, Sasaki K, Harada A, et al. Clinical significance of elevated levels of cardiac troponin T in patients with chronic heart failure. Am J Cardiol 1999;84:608–11, a9.CrossrefPubMedGoogle Scholar

  • 24.

    Zimmermann R, Baki S, Dengler TJ, Ring GH, Remppis A, Lange R, et al. Troponin T release after heart transplantation. Br Heart J 1993;69:395–8.PubMedCrossrefGoogle Scholar

  • 25.

    Labarrere CA, Nelson DR, Cox CJ, Pitts D, Kirlin P, Halbrook H. Cardiac-specific troponin I levels and risk of coronary artery disease and graft failure following heart transplantation. J Am Med Assoc 2000;284:457–64.CrossrefGoogle Scholar

  • 26.

    Madrid AH, del Rey JM, Rubi J, Ortega J, Gonzalez Rebollo JM, Seara JG, et al. Biochemical markers and cardiac troponin I release after radiofrequency catheter ablation: approach to size of necrosis. Am Heart J 1998;136:948–55.CrossrefPubMedGoogle Scholar

  • 27.

    Smith SC, Ladenson JH, Mason JW, Jaffe AS. Elevations of cardiac troponin I associated with myocarditis. Experimental and clinical correlates. Circulation 1997;95:163–8.PubMedCrossrefGoogle Scholar

  • 28.

    Imazio M, Demichelis B, Cecchi E, Belli R, Ghisio A, Bobbio M, et al. Cardiac troponin I in acute pericarditis. J Am Coll Cardiol 2003;42:2144–8.PubMedCrossrefGoogle Scholar

  • 29.

    Bonnefoy E, Godon P, Kirkorian G, Fatemi M, Chevalier P, Touboul P. Serum cardiac troponin I and ST-segment elevation in patients with acute pericarditis. Eur Heart J 2000;21:832–6.CrossrefPubMedGoogle Scholar

  • 30.

    Lavoinne A, Hue G. Serum cardiac troponins I and T in early posttraumatic rhabdomyolysis. Clin Chem 1998;44:667–8.Google Scholar

  • 31.

    ver Elst KM, Spapen HD, Nguyen DN, Garbar C, Huyghens LP, Gorus FK. Cardiac troponins I and T are biological markers of left ventricular dysfunction in septic shock. Clin Chem 2000;46:650–7.Google Scholar

  • 32.

    Ammann P, Fehr T, Minder EI, Gunter C, Bertel O. Elevation of troponin I in sepsis and septic shock. Intensive Care Med 2001;27:965–9.CrossrefPubMedGoogle Scholar

  • 33.

    Rifai N, Douglas PS, O’Toole M, Rimm E, Ginsburg GS. Cardiac troponin T and I, echocardiographic [correction of electrocardiographic] wall motion analyses, and ejection fractions in athletes participating in the Hawaii Ironman Triathlon. Am J Cardiol 1999;83:1085–9.PubMedCrossrefGoogle Scholar

  • 34.

    Urhausen A, Scharhag J, Herrmann M, Kindermann W. Clinical significance of increased cardiac troponins T and I in participants of ultra-endurance events. Am J Cardiol 2004;94:696–8.CrossrefGoogle Scholar

  • 35.

    Sedaghat-Hamedani F, Kayvanpour E, Frankenstein L, Mereles D, Amr A, Buss S, et al. Biomarker changes after strenuous exercise can mimic pulmonary embolism and cardiac injury – a metaanalysis of 45 studies. Clin Chem 2015;61:1246–55.CrossrefPubMedGoogle Scholar

  • 36.

    Naidech AM, Kreiter KT, Janjua N, Ostapkovich ND, Parra A, Commichau C, et al. Cardiac troponin elevation, cardiovascular morbidity, and outcome after subarachnoid hemorrhage. Circulation 2005;112:2851–6.CrossrefPubMedGoogle Scholar

  • 37.

    Keller T, Tzikas S, Zeller T, Czyz E, Lillpopp L, Ojeda FM, et al. Copeptin improves early diagnosis of acute myocardial infarction. J Am Coll Cardiol 2010;55:2096–106.PubMedCrossrefGoogle Scholar

  • 38.

    Reichlin T, Hochholzer W, Stelzig C, Laule K, Freidank H, Morgenthaler NG, et al. Incremental value of copeptin for rapid rule out of acute myocardial infarction. J Am Coll Cardiol 2009;54:60–8.CrossrefPubMedGoogle Scholar

  • 39.

    Itoi K, Jiang YQ, Iwasaki Y, Watson SJ. Regulatory mechanisms of corticotropin-releasing hormone and vasopressin gene expression in the hypothalamus. J Neuroendocrinol 2004;16:348–55.CrossrefPubMedGoogle Scholar

  • 40.

    Morgenthaler NG, Struck J, Alonso C, Bergmann A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem 2006;52:112–9.CrossrefPubMedGoogle Scholar

  • 41.

    Mockel M, Searle J, Hamm C, Slagman A, Blankenberg S, Huber K, et al. Early discharge using single cardiac troponin and copeptin testing in patients with suspected acute coronary syndrome (ACS): a randomized, controlled clinical process study. Eur Heart J 2015;36:369–76.CrossrefGoogle Scholar

  • 42.

    Mockel M, Searle J. Copeptin-marker of acute myocardial infarction. Curr Atheroscler Rep 2014;16:421.PubMedCrossrefGoogle Scholar

  • 43.

    Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993;75:843–54.PubMedCrossrefGoogle Scholar

  • 44.

    Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clin Chem 2010;56:1733–41.CrossrefPubMedGoogle Scholar

  • 45.

    Rao PK, Toyama Y, Chiang HR, Gupta S, Bauer M, Medvid R, et al. Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circ Res 2009;105:585–94.CrossrefPubMedGoogle Scholar

  • 46.

    Havelange V, Garzon R. MicroRNAs: emerging key regulators of hematopoiesis. Am J Hematol 2010;85:935–42.PubMedCrossrefGoogle Scholar

  • 47.

    Schultz NA, Dehlendorff C, Jensen BV, Bjerregaard JK, Nielsen KR, Bojesen SE, et al. MicroRNA biomarkers in whole blood for detection of pancreatic cancer. J Am Med Assoc 2014;311:392–404.CrossrefGoogle Scholar

  • 48.

    Vogel B, Keller A, Frese KS, Leidinger P, Sedaghat-Hamedani F, Kayvanpour E, et al. Multivariate miRNA signatures as biomarkers for non-ischaemic systolic heart failure. Eur Heart J 2013;34:2812–22.PubMedCrossrefGoogle Scholar

  • 49.

    Horie T, Baba O, Kuwabara Y, Chujo Y, Watanabe S, Kinoshita M, et al. MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice. J Am Heart Assoc 2012;1:e003376.Google Scholar

  • 50.

    Heymans S, Corsten MF, Verhesen W, Carai P, van Leeuwen RE, Custers K, et al. Macrophage microRNA-155 promotes cardiac hypertrophy and failure. Circulation 2013;128:1420–32.CrossrefPubMedGoogle Scholar

  • 51.

    Xu HF, Ding YJ, Zhang ZX, Wang ZF, Luo CL, Li BX, et al. MicroRNA21 regulation of the progression of viral myocarditis to dilated cardiomyopathy. Mol Med Rep 2014;10:161–8.PubMedCrossrefGoogle Scholar

  • 52.

    Lu Y, Zhang Y, Wang N, Pan Z, Gao X, Zhang F, et al. MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation. Circulation 2010;122:2378–87.CrossrefPubMedGoogle Scholar

  • 53.

    Jia K, Shi P, Han X, Chen T, Tang H, Wang J. Diagnostic value of miR-30d-5p and miR-125b-5p in acute myocardial infarction. Mol Med Rep 2016;14:184–94.PubMedCrossrefGoogle Scholar

  • 54.

    Oerlemans MI, Mosterd A, Dekker MS, de Vrey EA, van Mil A, Pasterkamp G, et al. Early assessment of acute coronary syndromes in the emergency department: the potential diagnostic value of circulating microRNAs. EMBO Mol Med 2012;4:1176–85.PubMedCrossrefGoogle Scholar

  • 55.

    Meder B, Keller A, Vogel B, Haas J, Sedaghat-Hamedani F, Kayvanpour E, et al. MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic Res Cardiol 2011;106:13–23.PubMedCrossrefGoogle Scholar

  • 56.

    Leidinger P, Backes C, Meder B, Meese E, Keller A. The human miRNA repertoire of different blood compounds. BMC genomics 2014;15:474.CrossrefPubMedGoogle Scholar

  • 57.

    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007;9:654–9.PubMedCrossrefGoogle Scholar

  • 58.

    Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2009;2:ra81.PubMedGoogle Scholar

  • 59.

    Yuan A, Farber EL, Rapoport AL, Tejada D, Deniskin R, Akhmedov NB, et al. Transfer of microRNAs by embryonic stem cell microvesicles. PLoS One 2009;4:e4722.PubMedCrossrefGoogle Scholar

  • 60.

    Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13:423–33.CrossrefPubMedGoogle Scholar

  • 61.

    Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 2011;108:5003–8.CrossrefGoogle Scholar

  • 62.

    Kappel A, Backes C, Huang Y, Zafari S, Leidinger P, Meder B, et al. MicroRNA in vitro diagnostics using immunoassay analyzers. Clin Chem 2015;61:600–7.CrossrefPubMedGoogle Scholar

  • 63.

    Morozova O, Marra MA. Applications of next-generation sequencing technologies in functional genomics. Genomics 2008;92:255–64.CrossrefPubMedGoogle Scholar

  • 64.

    Boguslawski SJ, Smith DE, Michalak MA, Mickelson KE, Yehle CO, Patterson WL, et al. Characterization of monoclonal antibody to DNA. RNA and its application to immunodetection of hybrids. J Immunol Methods 1986;89:123–30.CrossrefPubMedGoogle Scholar

  • 65.

    Weeks I, Beheshti I, McCapra F, Campbell AK, Woodhead JS. Acridinium esters as high-specific-activity labels in immunoassay. Clin Chem 1983;29:1474–9.PubMedGoogle Scholar

  • 66.

    Hofmann S, Huang Y, Paulicka P, Kappel A, Katus HA, Keller A, et al. Double-stranded ligation assay for the rapid multiplex quantification of microRNAS. Analyt Chem 2015;87:12104–11.CrossrefGoogle Scholar

About the article

Corresponding author: PD Dr. Benjamin Meder, Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany, Phone: +49 (0) 6221 5639564, Fax: +49 (0) 6221 564645


Received: 2016-07-06

Accepted: 2016-11-04

Published Online: 2016-11-28

Published in Print: 2016-12-01


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: Our work is supported by grants from the German Ministry of Education and Research (“Bundesministerium für Bildung und Forschung”), the German Centre for Cardiovascular Research (“Deutsches Zentrum für Herz-Kreislauf-Forschung e. V.”), CaRNAtion, and the European Union (FP7 BestAgeing).

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.


Citation Information: Diagnosis, Volume 3, Issue 4, Pages 183–188, ISSN (Online) 2194-802X, ISSN (Print) 2194-8011, DOI: https://doi.org/10.1515/dx-2016-0025.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in