Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Diagnosis

Official Journal of the Society to Improve Diagnosis in Medicine (SIDM)

Editor-in-Chief: Graber, Mark L. / Plebani, Mario

Ed. by Argy, Nicolas / Epner, Paul L. / Lippi, Giuseppe / McDonald, Kathryn / Singh, Hardeep

Editorial Board: Basso , Daniela / Crock, Carmel / Croskerry, Pat / Dhaliwal, Gurpreet / Ely, John / Giannitsis, Evangelos / Katus, Hugo A. / Laposata, Michael / Lyratzopoulos, Yoryos / Maude, Jason / Newman-Toker, David / Singhal, Geeta / Sittig, Dean F. / Sonntag, Oswald / Zwaan, Laura

Online
ISSN
2194-802X
See all formats and pricing
More options …

Blinding or information control in diagnosis: could it reduce errors in clinical decision-making?

Joseph J. Lockhart
  • Corresponding author
  • Consulting Psychologist, Forensic Services Division, Department of State Hospitals, State of California, Suite 410, Sacramento, CA 95814, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Saty Satya-Murti
Published Online: 2018-09-19 | DOI: https://doi.org/10.1515/dx-2018-0030

Abstract

Background

Clinical medicine has long recognized the potential for cognitive bias in the development of new treatments, and in response developed a tradition of blinding both clinicians and patients to address this specific concern. Although cognitive biases have been shown to exist which impact the accuracy of clinical diagnosis, blinding the diagnostician to potentially misleading information has received little attention as a possible solution. Recently, within the forensic sciences, the control of contextual information (i.e. information apart from the objective test results) has been studied as a technique to reduce errors. We consider the applicability of this technique to clinical medicine.

Content

This article briefly describes the empirical research examining cognitive biases arising from context which impact clinical diagnosis. We then review the recent awakening of forensic sciences to the serious effects of misleading information. Comparing the approaches, we discuss whether blinding to contextual information might (and in what circumstances) reduce clinical errors.

Summary and outlook

Substantial research indicates contextual information plays a significant role in diagnostic error and conclusions across several medical specialties. The forensic sciences may provide a useful model for the control of potentially misleading information in diagnosis. A conceptual analog of the forensic blinding process (the “agnostic” first reading) may be applicable to diagnostic investigations such as imaging, microscopic tissue examinations and waveform recognition. An “agnostic” approach, where the first reading occurs with minimal clinical referral information, but is followed by incorporation of the clinical history and reinterpretation, has the potential to reduce errors.

Keywords: blinding; cognitive bias; diagnostic error; forensic medicine; forensic psychology

References

  • 1.

    Rapezzi C, Ferrari R, Branzi A. White coats and fingerprints: diagnostic reasoning in medicine and investigative methods of fictional detectives. Br Med J 2005;331:1491–4.CrossrefGoogle Scholar

  • 2.

    Podolsky SH, Jones DS, Kaptchuk TJ. From trials to trials: blinding, medicine, and honest adjudication. In: Robertson CT, Kesselheim AS, editors. Blinding as a solution to bias: strengthening biomedical science, forensic science, and law. London, Boston, New York: Elsevier, 2016:45–58.Google Scholar

  • 3.

    Shapiro AK, Shapiro E. The powerful placebo: from ancient priest to modern physician. Baltimore, MD: Johns Hopkins University Press, 1997.Google Scholar

  • 4.

    Schulz KF, Grimes DA. Blinding in randomised trials: hiding who got what. The Lancet 2002;359:696–700.CrossrefGoogle Scholar

  • 5.

    Lockhart JJ, Satya-Murti S. Diagnosing crime and diagnosing disease: bias reduction strategies in the forensic and clinical sciences. J Forensic Sci 2017;62:1534–41.CrossrefPubMedGoogle Scholar

  • 6.

    Satya-Murti S, Lockhart JJ. Diagnosing crime and diagnosing disease-II: visual pattern perception and diagnostic accuracy. J Forensic Sci [Internet]. 2018 Jan 16; Available from: http://doi.wiley.com/10.1111/1556-4029.13735. Accessed: 16 Jan 2018.

  • 7.

    Oliver WR, Commentary on Lockhart JJ, Satya-Murti S. Diagnosing crime and diagnosing disease: bias reduction strategies in the forensic and clinical sciences. J Forensic Sci 2018;63:651–3.PubMedGoogle Scholar

  • 8.

    Osborne N, Lockhart JJ, Commentary on Satya-murti S. Diagnosing crime and diagnosing disease: bias reduction strategies in the forensic and clinical sciences. J Forensic Sci 2017;62:1423–4.PubMedGoogle Scholar

  • 9.

    Dror IE, Thompson WC, Meissner CA, Kornfield I, Krane D, Saks M, et al. Letter to the Editor – context management toolbox: a linear sequential unmasking (LSU) approach for minimizing cognitive bias in forensic decision making. J Forensic Sci 2015;60:1111–2.CrossrefPubMedGoogle Scholar

  • 10.

    Croskerry P. Bias: a normal operating characteristic of the diagnosing brain. Diagnosis 2014;1:23–7.CrossrefGoogle Scholar

  • 11.

    Graber ML, Franklin N, Gordon R. Diagnostic error in internal medicine. Arch Intern Med 2005;165:1493–9.PubMedCrossrefGoogle Scholar

  • 12.

    Seshia SS, Bryan Young G, Makhinson M, Smith PA, Stobart K, Croskerry P. Gating the holes in the Swiss cheese (part I): expanding professor reason’s model for patient safety. J Eval Clin Pract 2018;24:187–97.CrossrefPubMedGoogle Scholar

  • 13.

    Croskerry P, Singhal G, Mamede S. Cognitive debiasing 1: origins of bias and theory of debiasing. BMJ Qual Saf 2013;22(Suppl 2):ii58–64.CrossrefPubMedGoogle Scholar

  • 14.

    Norman GR, Monteiro SD, Sherbino J, Ilgen JS, Schmidt HG, Mamede S. The causes of errors in clinical reasoning: cognitive biases, knowledge deficits, and dual process thinking. Acad Med 2017;92:23–30.PubMedCrossrefGoogle Scholar

  • 15.

    Sherbino J, Kulasegaram K, Howey E, Norman G. Ineffectiveness of cognitive forcing strategies to reduce biases in diagnostic reasoning: a controlled trial. CJEM 2014;16:34–40.PubMedCrossrefGoogle Scholar

  • 16.

    Zwaan L, Monteiro S, Sherbino J, Ilgen J, Howey B, Norman G. Is bias in the eye of the beholder? A vignette study to assess recognition of cognitive biases in clinical case workups. BMJ Qual Saf 2017;26:104–10.CrossrefPubMedGoogle Scholar

  • 17.

    Loftus EF, Cole SA. Contaminated evidence. Sci Mag 2004;304:959b.Google Scholar

  • 18.

    Albright TD. Why eyewitnesses fail. Proc Natl Acad Sci 2017;114:7758–64.CrossrefGoogle Scholar

  • 19.

    National Research Council. Identifying the culprit: assessing eyewitness identification [Internet]. Washington, DC: The National Academies Press, 2014. Available from: https://www.nap.edu/catalog/18891/identifying-the-culprit-assessing-eyewitness-identification. Accessed: 9 Jun 2018

  • 20.

    Robertson CT, Kesselheim AS, editors. Blinding as a solution to bias: strengthening biomedical science, forensic science, and law, 1st ed. Amsterdam; Boston: Elsevier, 2016:388.Google Scholar

  • 21.

    Singh H, Sittig DF. Advancing the science of measurement of diagnostic errors in healthcare: the Safer Dx framework. BMJ Qual Saf 2015;24:103–10.CrossrefPubMedGoogle Scholar

  • 22.

    The National Academies of Sciences, Engineering, and Medicine. Improving diagnosis in health care [Internet]. Balogh EP, Miller BT, Ball JR, editors. Washington, D.C.: National Academies Press, 2015. Available from: http://www.nap.edu/catalog/21794. Accessed: 24 Apr 2016.

  • 23.

    Brown JM, Dickerson EC, Rabinowitz LC, Cohan RH, Ellis JH, Litell JM, et al. “Concordance” revisited: a multispecialty appraisal of “concordant” preliminary abdominopelvic CT reports. J Am Coll Radiol 2016;13:1111–7.CrossrefPubMedGoogle Scholar

  • 24.

    Wu MZ, McInnes MD, Blair Macdonald D, Kielar AZ, Duigenan S. CT in adults: systematic review and meta- analysis of interpretation discrepancy rates. Radiology 2013;270:717–35.PubMedGoogle Scholar

  • 25.

    Satya-Murti S, Lockhart JJ. Recognizing and reducing cognitive bias in clinical and forensic neurology. Neurol Clin Pract 2015;5:389–96.CrossrefPubMedGoogle Scholar

  • 26.

    Zamir E. The bias of the question posed: a diagnostic “invisible gorilla.” Diagnosis 2014;1:245–8.PubMedCrossrefGoogle Scholar

  • 27.

    Loy CT, Irwig L. Accuracy of diagnostic tests read with and without clinical information: a systematic review. J Am Med Assoc 2004;292:1602–9.CrossrefGoogle Scholar

  • 28.

    Moriarty AT, Nayar R, Arnold T, Gearries L, Renshaw A, Thomas N, et al. The Tahoe Study: bias in the interpretation of Papanicolaou test results when human papillomavirus status is known. Arch Pathol Lab Med 2014;138:1182–5.CrossrefPubMedGoogle Scholar

  • 29.

    Sibbald M, Cavalcanti RB. The biasing effect of clinical history on physical examination diagnostic accuracy. Med Educ 2011;45:827–34.PubMedCrossrefGoogle Scholar

  • 30.

    Test M, Shah SS, Monuteaux M, Ambroggio L, Lee EY, Markowitz RI, et al. Impact of clinical history on chest radiograph interpretation. J Hosp Med 2013;8:359–64.PubMedCrossrefGoogle Scholar

  • 31.

    Benbadis SR, Thomas P. When EEG is bad for you. Clin Neurophysiol 2017;128:656–7.CrossrefPubMedGoogle Scholar

  • 32.

    Moayedi Y, Duero Posada JG, Nesbitt GC, Ross HJ, Bell C, Dorian P, et al. Avoiding clinical errors with bedside echocardiography: a randomized clinical study. Can J Cardiol 2018;34:88–91.CrossrefGoogle Scholar

  • 33.

    Berbaum KS, Franken JE, Dorfman DD, Barloon T, Ell SR, Lu CH, et al. Tentative diagnoses facilitate the detection of diverse lesions in chest radiographs. Invest Radiol 1986;21:532–9.PubMedCrossrefGoogle Scholar

  • 34.

    Aideyan UO, Berbaum K, Smith WL. Influence of prior radiologic information on the interpretation of radiographic examinations. Acad Radiol 1995;2:205–8.CrossrefPubMedGoogle Scholar

  • 35.

    Gunderman RB. Biases in radiologic reasoning. Am J Roentgenol 2009;192:561–4.CrossrefGoogle Scholar

  • 36.

    Don AS, Carragee EJ. Is the self-reported history accurate in patients with persistent axial pain after a motor vehicle accident? Spine J 2009;9:4–12.PubMedCrossrefGoogle Scholar

  • 37.

    Iverson GL, Lange RT, Brooks BL, Rennison VL. “Good old days” bias following mild traumatic brain injury. Clin Neuropsychol 2010;24:17–37.CrossrefPubMedGoogle Scholar

  • 38.

    Eddy DM, Clanton CH. The art of diagnosis. N Engl J Med 1982;306:1263–8.CrossrefPubMedGoogle Scholar

  • 39.

    Meehl PE. When shall we use our heads instead of the formula? J Couns Psychol 1957;4:268.CrossrefGoogle Scholar

  • 40.

    Brase GL, Hill WT. Good fences make for good neighbors but bad science: a review of what improves Bayesian reasoning and why. Front Psychol [Internet]. 2015;6. Available from: https://www.frontiersin.org/articles/10.3389/fpsyg.2015.00340/full. Accessed: 2 Dec 2017.

  • 41.

    Goodman SN. Toward evidence-based medical statistics. 2: the Bayes factor. Ann Intern Med 1999;130:1005.CrossrefPubMedGoogle Scholar

  • 42.

    Gigerenzer G. Calculated risks: how to know when numbers deceive you. New York, NY: Simon and Schuster, 2002:328.Google Scholar

  • 43.

    Diamond GA, Forrester JS. Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease. N Engl J Med 1979;300:1350–8.PubMedCrossrefGoogle Scholar

  • 44.

    Littlefair S, Mello-Thoms C, Reed W, Pietryzk M, Lewis S, McEntee M, et al. Increasing prevalence expectation in thoracic radiology leads to overcall. Acad Radiol 2016;23:284–9.PubMedCrossrefGoogle Scholar

  • 45.

    Littlefair S, Brennan P, Reed W, Mello-Thoms C. Does expectation of abnormality affect the search pattern of radiologists when looking for pulmonary nodules? J Digit Imaging 2017;30:55–62.CrossrefPubMedGoogle Scholar

  • 46.

    Evans KK, Birdwell RL, Wolfe JM. If you don’t find it often, you often don’t find it: why some cancers are missed in breast cancer screening. PLoS One 2013;8:e64366.PubMedCrossrefGoogle Scholar

  • 47.

    Sirota M, Kostopoulou O, Round T, Samaranayaka S. Prevalence and alternative explanations influence cancer diagnosis: an experimental study with physicians. Health Psychol 2017;36:477.PubMedCrossrefGoogle Scholar

  • 48.

    Frederick PD, Nelson HD, Carney PA, Brunyé TT, Allison KH, Weaver DL, et al. The influence of disease severity of preceding clinical cases on pathologists’ medical decision making. Med Decis Making 2017;37:91–100.CrossrefPubMedGoogle Scholar

  • 49.

    Fanshawe TR, Phillips P, Plumb A, Helbren E, Halligan S, Taylor SA, et al. Do prevalence expectations affect patterns of visual search and decision-making in interpreting CT colonography endoluminal videos? Br J Radiol 2016;89:20150842.PubMedCrossrefGoogle Scholar

  • 50.

    Itri JN, Patel SH. Heuristics and cognitive error in medical imaging. Am J Roentgenol 2018;210:1097–105.CrossrefGoogle Scholar

  • 51.

    Benoy IH, Vanden Broeck D, Ruymbeke MJ, Sahebali S, Arbyn M, Bogers JJ, et al. Prior knowledge of HPV status improves detection of CIN2+ by cytology screening. Am J Obstet Gynecol 2011;205:569.e1–569.e7.CrossrefGoogle Scholar

  • 52.

    Bergeron C, Giorgi-Rossi P, Cas F, Schiboni ML, Ghiringhello B, Dalla Palma P, et al. Informed cytology for triaging HPV-positive women: substudy nested in the NTCC randomized controlled trial. JNCI J Natl Cancer Inst [Internet]. 2015 Feb 1;107. Available from: https://academic.oup.com/jnci/article/107/2/dju423/904218. Accessed: 16 Apr 2018.

  • 53.

    Doxtader EE, Brainard JA, Underwood D, Chute DJ. Knowledge of the HPV status biases cytotechnologists’ interpretation of Pap tests originally diagnosed as negative for intraepithelial lesion or malignancy. Cancer Cytopathol 2017;125:60–9.PubMedCrossrefGoogle Scholar

  • 54.

    Richardson LA, El-Zein M, Ramanakumar AV, Ratnam S, Sangwa-Lugoma G, Longatto-Filho A, et al. HPV DNA testing with cytology triage in cervical cancer screening: influence of revealing HPV infection status. Cancer Cytopathol 2015;123:745–54.PubMedCrossrefGoogle Scholar

  • 55.

    Wright TC, Stoler MH, Aslam S, Behrens CM. Knowledge of patients’ human papillomavirus status at the time of cytologic review significantly affects the performance of cervical cytology in the ATHENA study. Am J Clin Pathol 2016;146:391–8.CrossrefPubMedGoogle Scholar

  • 56.

    Pendse AA, Bauer AE, Dodd L, Scanga L. Increased rate of ASCUS diagnosis with concomitant request for high-risk human papillomavirus reflex testing may be due to cognitive bias. Am J Clin Pathol 2018;149:425–33.PubMedCrossrefGoogle Scholar

  • 57.

    Cwik JC, Margraf J. Information order effects in clinical psychological diagnoses. Clin Psychol Psychother 2017;24:1142–54.PubMedCrossrefGoogle Scholar

  • 58.

    Leblanc VR, Brooks LR, Norman GR. Believing is seeing: the influence of a diagnostic hypothesis on the interpretation of clinical features. Acad Med 2002;77:S67.PubMedCrossrefGoogle Scholar

  • 59.

    Mendel R, Traut-Mattausch E, Jonas E, Leucht S, Kane JM, Maino K, et al. Confirmation bias: why psychiatrists stick to wrong preliminary diagnoses. Psychol Med 2011;41:2651–9.PubMedCrossrefGoogle Scholar

  • 60.

    Pines JM. Profiles in patient safety: confirmation bias in emergency medicine. Acad Emerg Med Off J Soc Acad Emerg Med 2006;13:90–4.CrossrefGoogle Scholar

  • 61.

    Rebitschek FG, Bocklisch F, Scholz A, Krems JF, Jahn G. Biased processing of ambiguous symptoms favors the initially leading hypothesis in sequential diagnostic reasoning. Exp Psychol 2015;62:287.PubMedCrossrefGoogle Scholar

  • 62.

    Croskerry P. Achieving quality in clinical decision making: cognitive strategies and detection of bias. Acad Emerg Med 2002;9:1184–204.CrossrefPubMedGoogle Scholar

  • 63.

    Nickerson RS. Confirmation bias: a ubiquitous phenomenon in many guises. Rev Gen Psychol 1998;2:175.CrossrefGoogle Scholar

  • 64.

    Arkes HR, Faust D, Guilmette TJ, Hart K. Eliminating the hindsight bias. J Appl Psychol 1988;73:305–7.CrossrefGoogle Scholar

  • 65.

    Roese NJ, Vohs KD. Hindsight bias. Perspect Psychol Sci 2012;7:411–26.CrossrefPubMedGoogle Scholar

  • 66.

    Caplan RA, Posner KL, Cheney FW. Effect of outcome on physician judgments of appropriateness of care. J Am Med Assoc 1991;265:1957–60.CrossrefGoogle Scholar

  • 67.

    Dror IE. Biases in forensic experts. Science 2018;360:243–3.PubMedCrossrefGoogle Scholar

  • 68.

    Dror IE, Peron AE, Hind S-L, Charlton D. When emotions get the better of us: the effect of contextual top-down processing on matching fingerprints. Appl Cogn Psychol 2005;19:799–809.CrossrefGoogle Scholar

  • 69.

    Hsu SS. FBI admits flaws in hair analysis over decades. The Washington post [Internet]. 2015 Apr 18. Available from: https://www.washingtonpost.com/local/crime/fbi-overstated-forensic-hair-matches-in-nearly-all-criminal-trials-for-decades/2015/04/18/39c8d8c6-e515-11e4-b510-962fcfabc310_story.html. Accessed: 4 Apr 2016.

  • 70.

    Dror IE, Champod C, Langenburg G, Charlton D, Hunt H, Rosenthal R. Cognitive issues in fingerprint analysis: inter- and intra-expert consistency and the effect of a ‘target’ comparison. Forensic Sci Int 2011;208:10–7.PubMedCrossrefGoogle Scholar

  • 71.

    National Commission of Forensic Science. Ensuring that forensic analysis is based upon task-relevant information. 2012.Google Scholar

  • 72.

    National Research Council. Strengthening forensic science in the United States: a path forward [Internet]. Washington, D.C.: National Academies Press, 2009. Available from: http://www.nap.edu/catalog/12589. Accessed: 24 Apr 2016.

  • 73.

    MacLean CL, Dror IE. A primer on the psychology of cognitive bias. In: Robertson CT, Kesselheim AS, editors. Blinding as a solution to bias. London, Boston, New York: Elsevier, 2016:13–24.Google Scholar

  • 74.

    Osborne N, Taylor MC, Healey M, Zajac R. Bloodstain pattern classification: accuracy, effect of contextual information and the role of analyst characteristics. Sci Justice 2016;56:123–8.PubMedCrossrefGoogle Scholar

  • 75.

    Osborne N, Woods S, Kieser J, Zajac R. Does contextual information bias bitemark comparisons? Sci Justice 2014;54: 267–73.PubMedCrossrefGoogle Scholar

  • 76.

    Krane DE, Ford S, Gilder JR, Inman K, Jamieson A, Koppl R, et al. Sequential unmasking: a means of minimizing observer effects in forensic DNA interpretation. J Forensic Sci 2008;53:1006–7.PubMedCrossrefGoogle Scholar

  • 77.

    Langenburg G. Addressing potential observer effects in forensic science: a perspective from a forensic scientist who uses linear sequential unmasking techniques. Aust J Forensic Sci 2017;49:548–63.CrossrefGoogle Scholar

  • 78.

    Haber RN, Haber L. The culture of science: bias and forensic evidence. J Appl Res Mem Cogn 2013;2:65–7.CrossrefGoogle Scholar

  • 79.

    Osborne N, Zajac R. An imperfect match? crime-related context influences fingerprint decisions. Appl Cogn Psychol 2016;30:126–34.CrossrefGoogle Scholar

  • 80.

    Osborne N. Contextual information management: an example of independent-checking in the review of laboratory-based bloodstain pattern analysis – ScienceDirect. Sci Justice [Internet]. 2018. Available from: https://www.sciencedirect.com/science/article/pii/S1355030618300066. Accessed: 20 Apr 2018.

  • 81.

    Taylor MC, Osborne N. A contribution to contextual information management in bloodstain pattern analysis: preliminary idea for a two-step method of analysis. J Forensic Sci 2018;63:341.CrossrefPubMedGoogle Scholar

  • 82.

    Fandel T, Pfnür M, Schäfer S, Bacchetti P, Mast F, Corinth C, et al. Do we truly see what we think we see? The role of cognitive bias in pathological interpretation. J Pathol 2008;216:193–200.PubMedCrossrefGoogle Scholar

  • 83.

    Mora B, Bombari D, Schaefer SC, Schmidt M, Delaloye J-F, Mast F, et al. Tumor architecture exerts no bias on nuclear grading in breast cancer diagnosis. Virchows Arch 2012;461:399–403.CrossrefPubMedGoogle Scholar

  • 84.

    Bombari D, Mora B, Schaefer SC, Mast FW, Lehr H-A. What was I thinking? Eye-tracking experiments underscore the bias that architecture exerts on nuclear grading in prostate cancer. PLoS One 2012;7:e38023.CrossrefPubMedGoogle Scholar

  • 85.

    Lockhart JJ, Satya-Murti S. Authors’ response. J Forensic Sci 2018;63:654–5.PubMedCrossrefGoogle Scholar

  • 86.

    Elmore JG, Tosteson AN, Pepe MS, Longton GM, Nelson HD, Geller B, et al. Evaluation of 12 strategies for obtaining second opinions to improve interpretation of breast histopathology: simulation study. Br Med J 2016;353:i3069.Google Scholar

  • 87.

    Cavalcanti RB, Sibbald M. Am I right when I am sure? Data consistency influences the relationship between diagnostic accuracy and certainty. Acad Med 2014;89:107–13.CrossrefPubMedGoogle Scholar

  • 88.

    Griscom NT. A suggestion: look at the images first, before you read the history. Radiology 2002;223:9–10.CrossrefGoogle Scholar

  • 89.

    Elmore JG, Wells CK, Howard DH, Feinstein AR. The impact of clinical history on mammographic interpretations. J Am Med Assoc 1997;277:49–52.CrossrefGoogle Scholar

  • 90.

    McLendon RE. Errors in surgical neuropathology and the influence of cognitive biases: the psychology of intelligence analysis. Arch Pathol Lab Med 2006;130:613–6.PubMedGoogle Scholar

  • 91.

    Rosenkrantz AB, Bansal NK. Diagnostic errors in abdominopelvic CT interpretation: characterization based on report addenda. Abdom Radiol 2016;41:1793–9.CrossrefGoogle Scholar

  • 92.

    Lee CS, Nagy PG, Weaver SJ, Newman-Toker DE. Cognitive and system factors contributing to diagnostic errors in radiology. Am J Roentgenol 2013;201:611–7.CrossrefGoogle Scholar

  • 93.

    Lauritzen PM, Andersen JG, Stokke MV, Tennstrand AL, Aamodt R, Heggelund T, et al. Radiologist-initiated double reading of abdominal CT: retrospective analysis of the clinical importance of changes to radiology reports. BMJ Qual Saf 2016;25:595–603.PubMedCrossrefGoogle Scholar

  • 94.

    Carney PA, Frederick PD, Reisch LM, Titus L, Knezevich SR, Weinstock MA, et al. Complexities of perceived and actual performance in pathology interpretation: a comparison of cutaneous melanocytic skin and breast interpretations. J Cutan Pathol 2018;45:478–90.PubMedCrossrefGoogle Scholar

  • 95.

    Smith AC, Greene E. Conduct and its consequences: attempts at debiasing jury judgments. Law Hum Behav 2005;29:505.CrossrefPubMedGoogle Scholar

  • 96.

    Lemoine N, Dajer A, Konwinski J, Cavanaugh D, Besthoff C, Singh H. Understanding diagnostic safety in emergency medicine: a case-by-case review of closed ED malpractice claims. J Healthc Risk Manag [Internet]. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/jhrm.21321. Accessed: 22 May 2018.

  • 97.

    Murrie DC, Boccaccini MT. Adversarial allegiance among expert witnesses. Annu Rev Law Soc Sci 2015;11:37–55.CrossrefGoogle Scholar

  • 98.

    Murrie DC, Boccaccini MT, Caperton J, Rufino K. Field validity of the Psychopathy Checklist – Revised in sex offender risk assessment. Psychol Assess 2012;24:524.PubMedCrossrefGoogle Scholar

About the article

Corresponding author: Joseph J. Lockhart, PhD, ABPP, Consulting Psychologist, Forensic Services Division, Department of State Hospitals, State of California, Suite 410, Sacramento, CA 95814, USA, Phone: +916-616-1465


Received: 2018-05-26

Accepted: 2018-08-21

Published Online: 2018-09-19

Published in Print: 2018-11-27


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.


Citation Information: Diagnosis, Volume 5, Issue 4, Pages 179–189, ISSN (Online) 2194-802X, ISSN (Print) 2194-8011, DOI: https://doi.org/10.1515/dx-2018-0030.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in