Jump to ContentJump to Main Navigation
Show Summary Details
More options …

The EuroBiotech Journal


4 Issues per year

Open Access
See all formats and pricing
More options …

Advances in biotechnology: Genomics and genome editing

Kevan M.A. Gartland
  • Corresponding author
  • Life Sciences, Glasgow Caledonian Univsity, Glasgow G4 0BA, United Kingdom of Great Britain and Northern Ireland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Munis Dundar / Tommaso Beccari / Mariapia Viola Magni / Jill S. Gartland
  • Life Sciences, Glasgow Caledonian Univsity, Glasgow G4 0BA, United Kingdom of Great Britain and Northern Ireland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-01-27 | DOI: https://doi.org/10.24190/ISSN2564-615X/2017/01.02


Genomics, the study of genes, their functions and related techniques has become a crucial science for developing understanding of life processes and how they evolve. Since the advent of the human genome project, huge strides have been made in developing understanding of DNA and RNA sequence information and how it can be put to good use in the biotechnology sector. Newly derived sequencing and bioinformatics tools have added to the torrent of new insights gained, so that ‘sequence once and query often’ type DNA apps are now becoming reality. Genome editing, using tools such as CRISPR/Cas9 nuclease or Cpf1 nuclease, provide rapid methods for inserting, deleting or modifying DNA sequences in highly precise ways, in virtually any animal, plant or microbial system. Recent international discussions have considered human germline gene editing, amongst other aspects of this technology. Whether or not gene edited plants will be considered as genetically modified remains an important question. This will determine the regulatory processes adopted by different groups of nations and applicability to feeding the world’s ever growing population. Questions surrounding the intellectual property rights associated with gene editing must also be resolved. Mitochondrial replacement therapy leading to ‘3-Parent Babies’ has been successfully carried out in Mexico, by an international team, to correct mother to child mitochondrial disease transmission. The UK has become the first country to legally allow ‘cautious use’ of mitochondrial donation in treatment. Genomics and genome editing will continue to advance what can be achieved technically, whilst society determines whether or not what can be done should be applied.


  • 1. Fleischmann RD, Adams MD, White O, Clayton RA. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 1995; 269: 496-512.Google Scholar

  • 2. C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 1998; 282: 2012-2018.Google Scholar

  • 3. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R. Initial sequencing and analysis of the human genome. Nature, 2001; 409: 860-921.Google Scholar

  • 4. Venter JC, Adams MD, Myers EW, Li PW, et al. The sequence of the human genome. Science 2001; 291: 1304-1351.Google Scholar

  • 5. International Human Genome Sequencing Consortium Finishing the euchromatic sequence of the human genome. Nature 2004;431: 931-945.Google Scholar

  • 6. Veritas Genetics 2015; Veritas Genetics breaks $1000 whole genome barrier. http://www.veritasgenetics.comGoogle Scholar

  • 7. Lu H, Giordano F, Ning Z. Oxford nanopore minion sequencing and genome assembly. Genomics, Proteomics & Bioinformatics, 2016; 14: 265-279.CrossrefGoogle Scholar

  • 8. Frank JA, Pan Y, Tooming-Klunderud A, Eijsink VG, McHardy AC, Nederbragt AJ Pope PB. Improved metagenome assemblies and taxonomic binning using long-read circular consensus sequence data. Scientific Reports 2016; 6: 25373.Google Scholar

  • 9. Regalado M. DNA App store: an online store for information about your genes. MIT Technology Review, 2016; Mar/Apr 10 Breakthrough Technologies edition.Google Scholar

  • 10. AncestryDNA. Reveal where your ancestors came from. 2016. https://www.ancestry.co.uk/dna/?geo_a=r&geo_s=us&-geo_t=uk&geo_v=2.0.0&o_iid=64404&o_lid=64404&o_sch=Web+PropertyGoogle Scholar

  • 11. de Freitasa RCC, Bortolina RH, Lopesa MB, Hirata MH, Hirata RDC, Silbigera VN, Luchessia AD. Integrated analysis of miRNA and mRNA gene expression microarrays: Influence on platelet reactivity, clopidogrel response and drug-induced toxicity. Gene 2016;593: 172-178.Google Scholar

  • 12. Viveros ME, Areán C, Gutiérrez S, Vázquez S, Cardiel MH, Taboada A, Marín G, Solorio R, García N. Evaluation of clopidogrel response variability and identification of the CYP2C19 polymorphism in Mexican patients. Arch Cardiol Mex. 2016; 86: 297-304.Google Scholar

  • 13. Good Start Genetics, 2015. https://www.goodstartgenetics.com/ Herbicide tolerant canola, but not GMO.Google Scholar

  • 14. Steinberg G, Scott A, Honcz J, Spettell C, Pradhan S, Reducing Metabolic Syndrome Risk Using a Personalized Wellness Program. Journal of Occupational & Environmental Medicine 2015; 57: 1269-1274.Google Scholar

  • 15. Pathway Genomics PathwayFit® genetic fitness profile. (2015) https://www.pathway.com/pathway-fit/Google Scholar

  • 16. Genomics England, 2015a. The 100,000 Genomes Project Protocol. https://www.genomicsengland.co.uk/wp-content/uploads/2015/03/GenomicEnglandProtocol_030315_v8.pdfGoogle Scholar

  • 17. Genomics England, 2015b. A Framework for Industry Engagement: genomics enterprises prospectus. https://www.genomicsengland.co.uk/wp-content/uploads/2015/03/A-framework-for-industry-engagement_march2015.pdfGoogle Scholar

  • 18. Cambridge Healthtech Institute. Omes and omics glossary and taxonomy: evolving terminology for emerging technologies. 2015. http://www.genomicglossaries.com/content/printpage.asp?EF=/content/omes.aspGoogle Scholar

  • 19. Meng C, Zeleznik OA, Thallinger GG, Kuster B, Gholami AM, Culhane AC. Dimension reduction techniques for the integrative analysis of multi-omics data. Briefings in Bioinformatics 2016; 17: 628-641.CrossrefGoogle Scholar

  • 20. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337: 816-821.Google Scholar

  • 21. Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS 2012; 109: E2579-E2586.Google Scholar

  • 22. Wang CX, Cannon PM,. The clinical applications of genome edit ing in HIV. Blood 2016; 127: 2546-2552.Google Scholar

  • 23. Kühn R, Wurst W, Wefers B. TALENS Methods and Protocols. Methods in Molecular Biology 2016; 1338.CrossrefGoogle Scholar

  • 24. Kleinstiver BP, Tsai SQ, Prew MS, Nguyen NT, Welch MM, Lopez JM, McCaw ZR, Aryee MJ, Joung JK Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nature Biotechnology 2016; 34: 869-874.Google Scholar

  • 25. Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements J Mol Evol 2005; 60: 174-182.CrossrefGoogle Scholar

  • 26. Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 2008; 322: 1843-1845.Google Scholar

  • 27. Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV, van der Oost J. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 2008; 321: 960-964.Google Scholar

  • 28. Pougach K, Semenova E, Bogdanova E, Datsenko K A, Djordjevic M, Wanner BL, Severinov, K. Transcription, processing and function of CRISPR cassettes in Escherichia coli. Molecular Microbiology, 2010; 77: 1367-1379.Google Scholar

  • 29. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 2011;471: 602-607.Google Scholar

  • 30. Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucl. Acids Res. 2011; 39: gkr606-gkr9282.Google Scholar

  • 31. Doudna JA, Charpentier E,. The new frontier of genome engineering with CRISPR-Cas9. Science 2014; 346: 1258096.Google Scholar

  • 32. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339: 819-823.Google Scholar

  • 33. Lander ES. The heroes of CRISPR. Cell 2016; 164: 18-28.Google Scholar

  • 34. Theodilou F,. Genome editing, biochemical superpower? Biochemist 2016; 38:3.Google Scholar

  • 35. Taylor G,. Rewriting the book of life. Biochemist 2016; 38: 10-13.Google Scholar

  • 36. Zetschke B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015; 163: 759-71. doi:CrossrefGoogle Scholar

  • 37. Sontheimer EJ, Wolfe SA. Cas9 gets a classmate. Nature Biotechnology 2015; 33:1240-1241.Google Scholar

  • 38. Wright AV, Nunez JK, Doudna JA. Biology and applications of CRISPR systems: harnessing Nature’s toolbox for genome engineering. Cell 2016; 164: 29-44.Google Scholar

  • 39. Peterson A CRISPR; express delivery to any DNA address. Oral Diseases 2016; 23: 5-11.Google Scholar

  • 40. Gantz VM, Bier E. Genome editing. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science 2015; 348: 442-444.Google Scholar

  • 41. Alphey A. Can CRISPR-Cas9 gene drives curb malaria? Nature Biotechnology 2016; 34: 149-50.CrossrefGoogle Scholar

  • 42. Wu B, Luo L, Gao XJ. Cas9-triggered chain ablation of cas9 as a gene drive brake. Nat Biotechnol 2016; 34: 137-138.CrossrefGoogle Scholar

  • 43. Kaminski R, Chen Y, Fischer T, Tedaldi E, Napoli A, Zhang Y, Karn J, Hu W, Khalili K. Elimination of HIV-1 Genomes from Human T-lymphoid Cells by CRISPR/Cas9 Gene Editing. Scientific Reports 2016; 6: 22555.Google Scholar

  • 44. Bassuk AG, Zheng A, Li Y, Tsang SH, Mahajan VB. Precision Medicine: Genetic Repair of Retinitis Pigmentosa in Patient-Derived Stem Cells. Scientific Reports 2016; 6:19969.Google Scholar

  • 45. Olsum S. International Summit on Human Gene Editing: A Global Discussion. ISBN 978-0-309-2016 39193-1.Google Scholar

  • 46. Liang P, Xu Y, Zhang X, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 2015; 6: 363-372.Google Scholar

  • 47. Vassena R, Heindryckx B, Peco R, Pennings G, Raya A, Sermon K, Veiga A. Genome engineering through CRISPR/Cas9 technology in the human germline and pluripotent stem cells. Hum Reprod Update 2016; 22: 411-419.CrossrefGoogle Scholar

  • 48. Kang X, He W, Huang Y, Yu Q, Chen Y, Gao X, Sun X, Fan Y. Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing. J Assist Reprod Genet. 2016; 33:581-588.Google Scholar

  • 49. Torres-Ruiz R, Rodriguez-Perales S. CRISPR-Cas9 technology: applications and human disease modelling. Briefings in Functional Genomics 2016; Jun 26: elw025.Google Scholar

  • 50. Cyranoski D. Super-muscly pigs created by small genetic tweak. Nature 2015; 523: 13-14.Google Scholar

  • 51. United Nations, World Population Prospects, 2015; https://esa.un-.org/unpd/wpp/Google Scholar

  • 52. United Nations Food and Agriculture Organisation, Food and Agriculture Organisation Statistical Report, 2016; www.fao.org/faostat/en/#homeGoogle Scholar

  • 53. Gartland KMA, Gartland JS, Green biotechnology for food security in climate change. Elsevier Food Science Reference Module 2016. ISBN: 978-0-08-100596-5.Google Scholar

  • 54. Fladung M. Cibus’ herbicide-resistant canola in European limbo. Nature Biotechnology 2016; 34: 473-474.CrossrefGoogle Scholar

  • 55. Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 2009; 459: 437-41.Google Scholar

  • 56. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J-L.. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology 2014; 32: 947-951.CrossrefGoogle Scholar

  • 57. Perkowski M. USDA clears mildew resistant wheat. Capital Press 2016. 16 March.Google Scholar

  • 58. Feng Z. et al. Efficient genome editing in plants using a CRISPR/ Cas system. Cell Res. 2013; 23: 1229-1232CrossrefGoogle Scholar

  • 59. Waltz E. CRISPR-edited crops free to enter market, skip regulation. Nature Biotechnology 2016; 34: 582.Google Scholar

  • 60. Gill C. Gene-edited mushroom is changing GMO dialogue. Penn State News, 2016 April 19, 2016.Google Scholar

  • 61. Jones HD. Are plants engineered with CRISPR technology genetically modified organisms? Biochemist 2016; 38:14-17.Google Scholar

  • 62. Ranum P, Pena-Rosas JP, Garcia-Casal MN. Global maize production, utilization, and consumption. Annals of the New York Academy of Sciences 2014; 1312: 105-112.CrossrefGoogle Scholar

  • 63. Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol. J. 2016; doi:CrossrefGoogle Scholar

  • 64. Hart L. An SU-tolerant canola is just the first of what Cibus hopes will be a long list of trait improvements. GrainNews, 2016. January 28, 2016.Google Scholar

  • 65. Hitchcock J. Reflections on the law of gene editing. Biochemist 2016; 38: 22-25.Google Scholar

  • 66. Hamzelou J. Exclusive: World’s first baby born with new ‘3Parent’ technique. New Scientist 2016; 27 Sept, 2016.Google Scholar

  • 67. Zhang J, Liua H, Luob S, Chavez-Badiolac A, Liu Z, Yang M, Munned S, Konstantinidis M, Wellse D, Huang T. First live birth using human oocytes reconstituted by spindle nuclear transfer for mitochondrial DNA mutation causing Leigh syndrome. Fertility and Sterility 2016; 106: 3 Supplement e375-e376.Google Scholar

  • 68. Kang E, Wu J, Gutierrrez NM, Koski A et al., Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial mutations. Nature 2016; 540:270-275.Google Scholar

  • 69. Zafar A. Human embryo repair experiment swaps out faulty mitochondrial DNA. CBC News 03 Dec, 2016.Google Scholar

  • 70. Human Fertilisation & Embryology Authority. HFEA permits cautious use of mitochondrial donation in treatment, following advice from scientific experts. 2016. http://www.hfea.gov.uk/10563.htmlGoogle Scholar

About the article

Received: 2017-01-27

Published Online: 2017-01-27

Published in Print: 2017-01-27

Citation Information: The EuroBiotech Journal, Volume 1, Issue 1, Pages 2–9, ISSN (Online) 2564-615X, DOI: https://doi.org/10.24190/ISSN2564-615X/2017/01.02.

Export Citation

© 2018. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in