Jump to ContentJump to Main Navigation
Show Summary Details
More options …

The EuroBiotech Journal


4 Issues per year

Open Access
See all formats and pricing
More options …

Italian experience with Lesch-Nyhan patients and animal models of the disease

Vanna Micheli / Matteo Bertelli
Published Online: 2017-12-28 | DOI: https://doi.org/10.24190/ISSN2564-615X/2017/S2.06


Lesch-Nyhan Disease (LND) is a rare X-linked genetic disease with hypoxanthine-guanine phosphoribosyltransferase (HGPRT) deficiency, due to mutation in the encoding gene, located on the X-chromosome. LND patients exhibit hyperuricemia with stones due to unrecycled purine accumulation and increased synthesis, and a devastating neurological syndrome with dystonia and self-injurious behaviour, choreoathetosis and spasticity. In spite of biochemical and molecular research, the fine connection between the neurological syndrome and HGPRT deficiency is still unclear, though there is consensus regarding brain neurotransmitter dysfunction with few dopaminergic neuron terminals in the striatum. The rarity of the disease makes it difficult to obtain homogeneous population of patients to study. The aim of this paper is to contribute to the understanding of the connection between genotype and phenotype in a cohort of Italian patients, to propose a reliable method of identifying carrier women in affected families, and to provide evidence of a possible link between HGPRT deficiency and altered adenosinergic and serotonergic neurotransmission. Biochemical and mutation analysis is reported in 28 LNS Italian patients from 25 families, with virtually no HGPRT activity and typical LNS phenotype. Genetic analysis identified 24 HPRT mutations, nine of which had never previously been reported, and no mutation hotspots. Carrier females were identified by a new semiquantitative real-time PCR. Studies performed by real-time PCR on knockout mice demonstrated altered adenosinergic and serotonergic pathways, with greatly increased ADORA1A receptor expression, slightly decreased ADORA2A expression and unchanged ADORA2B expression. Increased HTRC2 expression with no significant difference in mRNA editing suggested serotonergic involvement. The different approaches used allowed us to study certain aspects of LND, focusing on mutation analysis in patients and carriers and on simultaneous analysis of biochemical and genetic features. Mouse models elucidated the possible involvement of adenosine and serotonine receptors in the neurotransmission aberration occurring in HGPRT deficiency.

Keywords: Lesch-Nyhan disease; LND; X-linked


  • 1. Jinnah HA, De Gregorio L, Harris JC, Nyhan WL, O’Neill JP. The spectrum of inherited mutations causing HPRT deficiency: 75 new cases and a review of 196 previously reported cases. Mutat Res. 2000;463:309 - 26.Google Scholar

  • 2. Lesch M and Nyhan WL, 1964 A familial disorder of uric acid metabolism and central nervous system function. Am J Med 36:561-570CrossrefGoogle Scholar

  • 3. Jinnah H.A., Visser J.E., Harris J.C., et al. Delineation of the motor disorder of Lesch-Nyhan disease. Brain 2006CrossrefGoogle Scholar

  • 4. Nyhan WL. Dopamine function in Lesch-Nyhan disease. Environ Health Perspect. 2000;108(Suppl 3):409 - 11.Google Scholar

  • 5. Visser JE, Bar PR, Jinnah HA. Lesch-Nyhan disease and the basal ganglia. Brain Res Rev. 2000;32:449 - 75.CrossrefGoogle Scholar

  • 6. Nyhan WL, Wong DF. New approaches to understanding Lesch- Nyhan disease. N Engl J Med. 1996 Jun 13;334(24):1602-4.Google Scholar

  • 7. Shirley TL, Lewers JC, Egami K, Majumdar A, Kelly M, Ceballos-Picot I, Seidman MM, Jinnah HA. A human neuronal tissue culture model for Lesch-Nyhan disease. J. Neurochem. 2007; 101:841-853Google Scholar

  • 8. Anderson LT and Ernst M. Self-injury in Lesch-Nyhan disease. J. Autism Dev. Disord. 1994; 24:67-81; + Jinnah HA, Visser JE, Harris JC, et al. Delineation of the motor disorder of Lesch-Nyhan disease. Brain 2006, 129:1201-1217; + Jinnah HA, Ceballos-Picot I, Torres RJ et al (2010) Attenuated variants of Lesch-Nyhan disease. Brain133:671-689Google Scholar

  • 9. Micheli V, Camici M, Tozzi M G, et al (2011) Neurological disorders of purine and pyrimidine metabolism. Curr Top Med Chem11(8):923-947Google Scholar

  • 10. Simmonds HA, Fairbanks LD, Morris GS, Webster DR, Harley EH. Altered erythrocyte nucleotide patterns are characteristic of inherited disorders of purine or pyrimidine metabolism. Clin. Chim. Acta 1988; 171:197-210), 5’nucleotidase (5’NT) (+ Pesi R, Micheli V, Jacomelli G, Peruzzi L, Camici M, Garcia-Gil M.,Allegrini S, Tozzi MG. Cytosolic 50-nucleotidase hyperactivity in erythrocytes of Lesch-Nyhan syndrome patients. Neuroreport 2000; 11:1827- 1831Google Scholar

  • 11. Micheli V, Sestini S, Rocchigiani M, et al. Hypoxanthine-guanine phosphoribosyltransferase deficiency and erythrocyte synthesis of pyridine coenzymes. Life Sci. 1999;64(26):2479-87.Google Scholar

  • 12. Cerboni B, Micheli V, Jacomelli G, Notarantonio L, Pompucci G, and Sestini S. Nadglycohydrolase activity in Lesch-Nyhan erythrocytes. 12th International Symposium on Purine and Pyrimidine Metabolism in Man. Chicago, IL, USA, June 24-28, 2007 Abstract book page 66Google Scholar

  • 13. Fairbanks LD, Jacomelli G, Micheli V, Slade T, Simmonds HA. Severe pyridine nucleotide depletion in fibroblasts from Lesch-Nyhan patients. Biochem. J. 2002; 366:265-272Google Scholar

  • 14. Jinnah HA, Langlais PJ, Friedmann T. Functional analysis of brain dopamine systems in a genetic mouse model of Lesch-Nyhan syndrome. J Pharmacol Exp Ther. 1992 Nov;263(2):596-607.Google Scholar

  • 15. Allen SM, Davis WM. Relationship of dopamine to serotonin in the neonatal 6-OHDA rat model of Lesch-Nyhan syndrome. Behav Pharmacol. 1999 Sep;10(5):467-74.CrossrefGoogle Scholar

  • 16. Jinnah HA, Wojcik BE, Hunt M, et al. Dopamine deficiency in a genetic mouse model of Lesch-Nyhan disease. J Neurosci. 1994 Mar;14(3 Pt 1):1164-75.Google Scholar

  • 17. Jinnah HA, Page T, Friedmann T. Brain purines in a genetic mouse model of Lesch-Nyhan disease. J Neurochem. 1993 Jun;60(6):2036-45.Google Scholar

  • 18 . Jinnah HA., Jones MD, Wojcik BE, Rothstein JD, Hess EJ, Friedmann T, Breese GR. Influence of age and strain on striatal dopamine loss in a genetic mouse model of Lesch-Nyhan disease. J. Neurochem. 1999; 72:225-229Google Scholar

  • 19. Seegmiller JE, Rosenbloom FM, Kelley WN. Enzyme defect associated with a sex-linked human neurological disorder and excessive purine synthesis. Science. 1967 Mar 31;155(770):1682-4.Google Scholar

  • 20. Jinnah HA, Harris JC, Nyhan WL, O’Neill JP. The spectrum of mutations causing HPRT deficiency: an update. Nucleosides Nucleotides Nucleic Acids. 2004 Oct;23(8-9):1153-60.Google Scholar

  • 21. Marcus S, Steen AM, Andersson B, Lambert B, Kristoffersson U, Francke U. Mutation analysis and prenatal diagnosis in a Lesch- Nyhan family showing non-random X-inactivation interfering with carrier detection tests. Hum Genet. 1992 Jun;89(4):395-400.Google Scholar

  • 22. Gibbs RA, Nguyen PN, Edwards A, Civitello AB, Caskey CT. Multiplex DNA deletion detection and exon sequencing of the hypoxanthine phosphoribosyltransferase gene in Lesch-Nyhan families. Genomics. 1990;7:235 - 44.CrossrefGoogle Scholar

  • 23. Nussbaum RL, Crowder WE, Nyhan WL, Caskey CT. A three-allele restriction-fragment-length polymorphism at the hypoxanthine phosphoribosyltransferase locus in man. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4035-9.CrossrefGoogle Scholar

  • 24. Ogasawara N, Stout JT, Goto H, Sonta S, Matsumoto A, Caskey CT. Molecular analysis of a female Lesch-Nyhan patient. J Clin Invest. 1989 Sep;84(3):1024-7.Google Scholar

  • 25. Daniels R, Adjaye J, Bolton V, Monk M. Detection of a novel splice variant of the hypoxanthine-guanine phosphoribosyl transferase gene in human oocytes and preimplantation embryos: implications for a RT-PCR-based preimplantation diagnosis of Lesch-Nyhan syndrome. Mol Hum Reprod. 1998 Aug;4(8):785-9.Google Scholar

  • 26. Gartler SM, Scott RC, Goldstein JL, Campbell B. Lesch-Nyhan syndrome: rapid detection of heterozygotes by use of hair follicles. Science. 1971 May 7;172(983):572-4.Google Scholar

  • 27. O’Neill JP. Mutation carrier testing in Lesch-Nyhan syndrome families: HPRT mutant frequency and mutation analysis with peripheral blood T lymphocytes. Genet Test. 2004;8:51 - 64.Google Scholar

  • 28. Dempsey JL, Morley AA, Seshadri RS, Emmerson BT, Gordon R, Bhagat CI. Detection of the carrier state for an X-linked disorder, the Lesch-Nyhan syndrome, by the use of lymphocyte cloning. Hum Genet. 1983;64(3):288-90.CrossrefGoogle Scholar

  • 29. Ponchel F, Toomes C, Bransfield K, et al. Real-time PCR based on SYBR-Green I fluorescence: an alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions. BMC Biotechnol. 2003 Oct 13;3:18.Google Scholar

  • 30. Criswell H, Mueller RA, Breese GR. Assessment of purine-dopamine interactions in 6-hydroxydopamine-lesioned rats: evidence for pre- and postsynaptic influences by adenosine. J Pharmacol Exp Ther. 1988;244:493 - 500.Google Scholar

  • 31. Breese GR, Mueller RA, Napier TC, Duncan GE. Neurobiology of D1 dopamine receptors after neonatal-6-OHDA treatment: relevance to Lesch-Nyhan disease. Adv Exp Med Biol. 1986;204:197-215.Google Scholar

  • 32. Breese GR, Criswell HE, Duncan GE, Mueller RA. Dopamine deficiency in self-injurious behavior. Psychopharmacol Bull. 1989;25(3):353-7.Google Scholar

  • 33. Okada M, Nutt DJ, Murakami T, et al. Adenosine receptor subtypes modulate two major functional pathways for hippocampal serotonin release. J Neurosci. 2001 Jan 15;21(2):628-40.Google Scholar

  • 34. Okada M, Kawata Y, Murakami T, et al. Differential effects of adenosine receptor subtypes on release and reuptake of hippocampal serotonin. Eur J Neurosci. 1999 Jan;11(1):1-9.CrossrefGoogle Scholar

  • 35. Okada M, Kawata Y, Kiryu K, et al. Effects of adenosine receptor subtypes on hippocampal extracellular serotonin level and serotonin reuptake activity. J Neurochem. 1997 Dec;69(6):2581-8.Google Scholar

  • 36. Golembiowska K, Dziubina A. Striatal adenosine A(2A) receptor blockade increases extracellular dopamine release following l-DOPA administration in intact and dopamine-denervated rats. Neuropharmacology. 2004 Sep;47(3):414-26.CrossrefGoogle Scholar

  • 37. Kudlacek O, Just H, Korkhov VM, et al. The human D2 dopamine receptor synergizes with the A2A adenosine receptor to stimulate adenylyl cyclase in PC12 cells. Neuropsychopharmacology. 2003 Jul;28(7):1317-27.Google Scholar

  • 38. Le Crom S, Prou D, Vernier P. Autocrine activation of adenosine A1 receptors blocks D1A but not D1B dopamine receptor desensitization. J Neurochem. 2002 Sep;82(6):1549-52.Google Scholar

  • 39. Torres RJ, DeAntonio I, Prior C, Puig JG. Adenosine transport in HPRT deficient lymphocytes from Lesch-Nyhan disease patients. Nucleosides Nucleotides Nucleic Acids. 2004 Oct;23(8-9):1193-6.CrossrefGoogle Scholar

  • 40. Torres RJ, DeAntonio I, Prior C, Puig JG. Effects of hypoxanthine on adenosine transport in human lymphocytes. Implications in the pathogenesis of Lesch-Nyhan syndrome. Nucleosides Nucleotides Nucleic Acids. 2004 Oct;23(8-9):1177-9.CrossrefGoogle Scholar

  • 41. Pinto CS, Seifert R. Decreased GTP-stimulated adenylyl cyclase activity in HPRT-deficient human and mouse fibroblast and rat B103 neuroblastoma cell membranes. J Neurochem. 2006;96:454- 9.Google Scholar

  • 42. Jinnah HA, Page T, Friedmann T. Brain purines in a genetic mouse model of Lesch-Nyhan disease. J Neurochem. 1993 Jun;60(6):2036-45CrossrefGoogle Scholar

  • 43. Aleo MF, Sestini S, Pompucci G, Preti A. Enzymatic activities affecting exogenous nicotinamide adenine dinucleotide in human skin fibroblasts. J Cell Physiol. 1996 Apr;167(1):173-6.Google Scholar

  • 44. Clark M, Dar MS. The effects of various methods of sacrifice and of ethanol on adenosine levels in selected areas of rat brain. J Neurosci Methods. 1988 Oct;25(3):243-9.CrossrefGoogle Scholar

  • 45. Van Praag HM, Plutchik R, Conte H. The serotonin hypothesis of (auto)aggression. Critical appraisal of the evidence. Ann N Y Acad Sci. 1986;487:150-67.Google Scholar

  • 46. Miczek KA, de Almeida RM, Kravitz EA, Rissman EF, de Boer SF, Raine A. Neurobiology of escalated aggression and violence. J Neurosci. 2007 Oct 31;27(44):11803-6.Google Scholar

  • 47. Bavaresco CS, Chiarani F, Duringon E, et al. Intrastriatal injection of hypoxanthine reduces striatal serotonin content and impairs spatial memory performance in rats. Metab Brain Dis. 2007 Mar;22(1):67-76.CrossrefGoogle Scholar

  • 48. Manzke H, Gustmann H. Reduced urinary serotonin excretion after intake of high doses of hypoxanthine. Eur J Pediatr. 1989 Jan;148(4):337-40.Google Scholar

  • 49. Saito Y, Takashima S. Neurotransmitter changes in the pathophysiology of Lesch-Nyhan syndrome. Brain Dev. 2000 Sep;22 Suppl 1:S122-31.Google Scholar

  • 50. Niswender CM, Herrick-Davis K, Dilley GE, et al. RNA editing of the human serotonin 5-HT2C receptor. alterations in suicide and implications for serotonergic pharmacotherapy. Neuropsychopharmacology. 2001 May;24(5):478-91.CrossrefGoogle Scholar

  • 51. Davidson RJ, Putnam KM, Larson CL. Dysfunction in the neural circuitry of emotion regulation - a possible prelude to violence. Science. 2000 Jul 28;289(5479):591-4.Google Scholar

  • 52. Bertelli M, Randi D, Micheli V, et al. Molecular basis of hypoxanthineguanine phosphoribosyltransferase deficiency in Italian Lesch- Nyhan patients: identification of nine novel mutations. J Inherit Metab Dis. 2004;27(6):767-73.CrossrefGoogle Scholar

  • 53. Skopek TR, Recio L, Simpson D, et al. Molecular analyses of a Lesch-Nyhan syndrome mutation (hprtMontreal) by use of T-lymphocyte cultures. Hum Genet. 1990 Jun;85(1):111-6.Google Scholar

  • 54. Gathof BS, Rocchigiani M, Micheli V, Gaigl Z, Gresser U. HPRTmutations in Italian Lesch-Nyhan patients. Adv Exp Med Biol. 1998;431:151-3.Google Scholar

  • 55. Cossu A, Orru S, Jacomelli G, Carcassi C, Contu L, Sestini S, Corradi MR, Pompucci G, Carcassi A, Micheli V. HPRTSARDINIA : a new point mutation causing HPRT deficiency without Lesch-Nyhan disease. Biochem Biophys Acta, -Molecular Basis of Disease 1762 (2006) 29-33.Google Scholar

  • 56. Turner CP, Yan H, Schwartz M, Othman T, Rivkees SA. A1 adenosine receptor activation induces ventriculomegaly and white matter loss. Neuroreport. 2002 Jul 2;13(9):1199-204.Google Scholar

  • 57. Blum D, Galas MC, Pintor A, et al. A dual role of adenosine A2A receptors in 3-nitropropionic acid-induced striatal lesions: implications for the neuroprotective potential of A2A antagonists. J Neurosci. 2003 Jun 15;23(12):5361-9.Google Scholar

  • 58. Carta AR, Pinna A, Tronci E, Morelli M. Adenosine A2A and dopamine receptor interactions in basal ganglia of dopamine denervated rats. Neurology. 2003 Dec 9;61(11 Suppl 6):S39-43.CrossrefGoogle Scholar

About the article

Published Online: 2017-12-28

Published in Print: 2017-12-28

Citation Information: The EuroBiotech Journal, Volume 1, Issue s2, Pages 133–143, ISSN (Online) 2564-615X, DOI: https://doi.org/10.24190/ISSN2564-615X/2017/S2.06.

Export Citation

© 2018. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in