Jump to ContentJump to Main Navigation
Show Summary Details
More options …

The EuroBiotech Journal


4 Issues per year

Open Access
See all formats and pricing
More options …

Human term placenta as source of stem cells for regenerative medicine

Antonietta R. Silini
  • Centro di Ricerca “E. Menni”, Fondazione Poliambulanza, Istituto Ospedaliero, Brescia, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ornella Parolini
  • Corresponding author
  • Centro di Ricerca “E. Menni”, Fondazione Poliambulanza, Istituto Ospedaliero, Brescia, Italy
  • Istituto di Anatomia Umana e Biologia Cellulare, Facoltà di Medicina e chirurgia “A. Gemelli”, Università Cattolica del Sacro Cuore, Rome, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-12-28 | DOI: https://doi.org/10.24190/ISSN2564-615X/2017/S2.08


A goal of regenerative medicine is to repair and regenerate damaged cells, tissues, and organs and ultimately restore function. Regeneration can be obtained by cell replacement or by stimulating the body’s own repair mechanisms. It requires a favorable microenvironment so that regenerative signals can stimulate resident stem/stromal cells. Regeneration is only possible after resolution of injury-induced inflammation. Immune response may be aggravated in degenerative, inflammation-based diseases. In this mini-review we discuss how cells isolated from the amniotic membrane of human term placentas and their derivatives, such as conditioned cell culture medium, can help resolve many diseases characterized by altered immune response by acting on different inflammatory mediators. Amniotic cells and derivatives have a wide spectrum of immunomodulatory properties that help trigger tissue regeneration. They can promote resolution of injury-related inflammation by reducing pro-inflammatory signals and favoring anti-inflammatory immune components. The multifaceted, immunomodulatory properties of amniotic membrane-derived cells and derivatives make them attractive for a variety of applications, especially in diseases with an exacerbated immune response, such as degenerative, inflammatory- based diseases.

Keywords: regenerative medicine; immunomodulation; paracrine; human term placenta; amniotic membrane; mesenchymal stromal/stem cells


  • 1. Parolini O, De D, Rodrigues MF, and Caruso M Placental Stem/Progenitor Cells: Isolation and Characterization, in Perinatal Stem Cells, A. Atala and S.V. Murphy, Editors. 2014, Springer Science: New York. p.373.Google Scholar

  • 2. Debashree D, Kmiecik G, Cargnoni A, and Parolini O Placenta-Derived Cells and Their Therapeutic Applications, in Gene and Cell Therapy: Therapeutic Mechanisms and Strategies, N.S. Templeton, Editor. 2015, CRC Press.Google Scholar

  • 3. Parolini O and Soncini M Placenta as a Source of Stem Cells and as a Key Organ for Fetomaternal Tolerance, in Regenerative Medicine Using Pregnancy-Specific Biological Substances, N. Bhattacharya and P. Stubblefield, Editors. 2011, Springer-Verlag: London. p. 460.Google Scholar

  • 4. Parolini O, Alviano F, Bagnara GP, Bilic G, Buhring HJ, Evangelista M, Hennerbichler S, Liu B, Magatti M, Mao N, Miki T, Marongiu F, Nakajima H, Nikaido T, Portmann-Lanz CB, Sankar V, Soncini M, Stadler G, Surbek D, Takahashi TA, Redl H, Sakuragawa N, Wolbank S, Zeisberger S, Zisch A, and Strom SC Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells. 2008; 26(2):300-11.Google Scholar

  • 5. Fukuchi Y, Nakajima H, Sugiyama D, Hirose I, Kitamura T, and Tsuji K Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells. 2004; 22(5):649-58.CrossrefGoogle Scholar

  • 6. Igura K, Zhang X, Takahashi K, Mitsuru A, Yamaguchi S, and Takashi TA Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy. 2004; 6(6):543-53.CrossrefGoogle Scholar

  • 7. Portmann-Lanz CB, Schoeberlein A, Huber A, Sager R, Malek A, Holzgreve W, and Surbek DV Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am J Obstet Gynecol. 2006; 194(3):664-73.Google Scholar

  • 8. Castrechini NM, Murthi P, Gude NM, Erwich JJ, Gronthos S, Zannettino A, Brennecke SP, and Kalionis B Mesenchymal stem cells in human placental chorionic villi reside in a vascular Niche. Placenta. 2010;31(3):203-12.Google Scholar

  • 9. In ‘t Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH, Fibbe WE, and Kanhai HH Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells. 2004; 22(7):1338-45.Google Scholar

  • 10. Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu YS, Lai MC, and Chen CC Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells. 2004; 22(7):1330-7.Google Scholar

  • 11. Troyer DL and Weiss ML Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells. 2008; 26(3):591-9. CrossrefGoogle Scholar

  • 12. La Rocca G, Anzalone R, Corrao S, Magno F, Loria T, Lo Iacono M, Di Stefano A, Giannuzzi P, Marasa L, Cappello F, Zummo G, and Farina F Isolation and characterization of Oct-4+/HLA-G+ mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochem Cell Biol. 2009; 131(2):267-82.Google Scholar

  • 13. Robin C and Dzierzak E Preparation of hematopoietic stem and progenitor cells from the human placenta. Curr Protoc Stem Cell Biol. 2010; Chapter 2:Unit 2A 9.Google Scholar

  • 14. Dzierzak E and Robin C Placenta as a source of hematopoietic stem cells. Trends Mol Med. 2010; 16(8):361-7.Google Scholar

  • 15. Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, Meyer EM, Morel L, Petersen BE, and Scott EW Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature. 2002; 416(6880):542-5.Google Scholar

  • 16. Nygren JM, Jovinge S, Breitbach M, Sawen P, Roll W, Hescheler J, Taneera J, Fleischmann BK, and Jacobsen SE Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med. 2004; 10(5):494-501.CrossrefGoogle Scholar

  • 17. Manuelpillai U, Tchongue J, Lourensz D, Vaghjiani V, Samuel CS, Liu A, Williams ED, and Sievert W Transplantation of human amnion epithelial cells reduces hepatic fibrosis in immunocompetent CCl(4)-treated mice. Cell Transplant. 2010; 19(9):1157-68.Google Scholar

  • 18. Manuelpillai U, Lourensz D, Vaghjiani V, Tchongue J, Lacey D, Tee JY, Murthi P, Chan J, Hodge A, and Sievert W Human amniotic epithelial cell transplantation induces markers of alternative macrophage activation and reduces established hepatic fibrosis. PLoS One. 2012; 7(6):e38631.Google Scholar

  • 19. Cargnoni A, Gibelli L, Tosini A, Signoroni PB, Nassuato C, Arienti D, Lombardi G, Albertini A, Wengler GS, and Parolini O Transplantation of allogeneic and xenogeneic placenta-derived cells reduces bleomycin- induced lung fibrosis. Cell Transplant. 2009; 18(4):405-22.CrossrefGoogle Scholar

  • 20. Moodley Y, Ilancheran S, Samuel C, Vaghjiani V, Atienza D, Williams ED, Jenkin G, Wallace E, Trounson A, and Manuelpillai U Human amnion epithelial cell transplantation abrogates lung fibrosis and augments repair. Am J Respir Crit Care Med. 2010; 182(5):643-51.Google Scholar

  • 21. Murphy SV, Shiyun SC, Tan JL, Chan S, Jenkin G, Wallace EM, and Lim R Human amnion epithelial cells do not abrogate pulmonary fibrosis in mice with impaired macrophage function. Cell Transplant. 2012; 21(7):1477-92.CrossrefGoogle Scholar

  • 22. Murphy S, Lim R, Dickinson H, Acharya R, Rosli S, Jenkin G, and Wallace E Human amnion epithelial cells prevent bleomycin-induced lung injury and preserve lung function. Cell Transplant. 2011; 20(6):909-23.CrossrefGoogle Scholar

  • 23. Vosdoganes P, Wallace EM, Chan ST, Acharya R, Moss TJ, and Lim R Human amnion epithelial cells repair established lung injury. Cell Transplant. 2013; 22(8):1337-49.Google Scholar

  • 24. Tan JL, Chan ST, Wallace EM, and Lim R Human amnion epithelial cells mediate lung repair by directly modulating macrophage recruitment and polarization. Cell Transplant. 2014; 23(3):319-28.CrossrefGoogle Scholar

  • 25. Parolini O, Souza-Moreira L, O’Valle F, Magatti M, Hernandez-Cortes P, Gonzalez-Rey E, and Delgado M Therapeutic effect of human amniotic membrane-derived cells on experimental arthritis and other inflammatory disorders. Arthritis Rheumatol. 2014; 66(2):327-39.Google Scholar

  • 26. Onishi R, Ohnishi S, Higashi R, Watari M, Yamahara K, Okubo N, Nakagawa K, Katsurada T, Suda G, Natsuizaka M, Takeda H, and Sakamoto N Human Amnion-Derived Mesenchymal Stem Cell Transplantation Ameliorates Dextran Sulfate Sodium-Induced Severe Colitis in Rats. Cell Transplant. 2015; 24(12):2601-14.Google Scholar

  • 27. Pischiutta F, Brunelli L, Romele P, Silini A, Sammali E, Paracchini L, Marchini S, Talamini L, Bigini P, Boncoraglio GB, Pastorelli R, De Simoni MG, Parolini O, and Zanier ER Protection of Brain Injury by Amniotic Mesenchymal Stromal Cell-Secreted Metabolites. Crit Care Med.2016.Google Scholar

  • 28. Yan ZJ, Zhang P, Hu YQ, Zhang HT, Hong SQ, Zhou HL, Zhang MY, and Xu RX Neural stem-like cells derived from human amnion tissue are effective in treating traumatic brain injury in rat. Neurochem Res. 2013; 38(5):1022-33.CrossrefGoogle Scholar

  • 29. Ventura C, Cantoni S, Bianchi F, Lionetti V, Cavallini C, Scarlata I, Foroni L, Maioli M, Bonsi L, Alviano F, Fossati V, Bagnara GP, Pasquinelli G, Recchia FA, and Perbellini A Hyaluronan mixed esters of butyric and retinoic Acid drive cardiac and endothelial fate in term placenta human mesenchymal stem cells and enhance cardiac repair in infarcted rat hearts. J Biol Chem. 2007; 282(19):14243-52.Google Scholar

  • 30. Tsuji H, Miyoshi S, Ikegami Y, Hida N, Asada H, Togashi I, Suzuki J, Satake M, Nakamizo H, Tanaka M, Mori T, Segawa K, Nishiyama N, Inoue J, Makino H, Miyado K, Ogawa S, Yoshimura Y, and Umezawa A Xenografted human amniotic membrane-derived mesenchymal stem cells are immunologically tolerated and transdifferentiated into cardiomyocytes. Circ Res. 2010; 106(10):1613-23.Google Scholar

  • 31. Fang CH, Jin J, Joe JH, Song YS, So BI, Lim SM, Cheon GJ, Woo SK, Ra JC, Lee YY, and Kim KS In vivo differentiation of human amniotic epithelial cells into cardiomyocyte-like cells and cell transplantation effect on myocardial infarction in rats: comparison with cord blood and adipose tissue-derived mesenchymal stem cells. Cell Transplant. 2012; 21(8):1687-96.Google Scholar

  • 32. Vosdoganes P, Lim R, Koulaeva E, Chan ST, Acharya R, Moss TJ, and Wallace EM Human amnion epithelial cells modulate hyperoxia-induced neonatal lung injury in mice. Cytotherapy. 2013; 15(8):1021-9.Google Scholar

  • 33. Hodges RJ, Jenkin G, Hooper SB, Allison B, Lim R, Dickinson H, Miller SL, Vosdoganes P, and Wallace EM Human amnion epithelial cells reduce ventilation-induced preterm lung injury in fetal sheep. Am J Obstet Gynecol. 2012; 206(5):448 e8-15.Google Scholar

  • 34. Vosdoganes P, Hodges RJ, Lim R, Westover AJ, Acharya RY, Wallace EM, and Moss TJ Human amnion epithelial cells as a treatment for inflammation- induced fetal lung injury in sheep. Am J Obstet Gynecol. 2011; 205(2):156 e26-33.Google Scholar

  • 35. Barboni B, Russo V, Curini V, Mauro A, Martelli A, Muttini A, Bernabo N, Valbonetti L, Marchisio M, Di Giacinto O, Berardinelli P, and Mattioli M Achilles tendon regeneration can be improved by amniotic epithelial cell allotransplantation. Cell Transplant. 2012; 21(11):2377-95.CrossrefGoogle Scholar

  • 36. Mauro A, Russo V, Di Marcantonio L, Berardinelli P, Martelli A, Muttini A, Mattioli M, and Barboni B M1 and M2 macrophage recruitment during tendon regeneration induced by amniotic epithelial cell allotransplantation in ovine. Research in Veterinary Science. 2016; 105:92-102.CrossrefGoogle Scholar

  • 37. Kranz A, Wagner DC, Kamprad M, Scholz M, Schmidt UR, Nitzsche F, Aberman Z, Emmrich F, Riegelsberger UM, and Boltze J Transplantation of placenta-derived mesenchymal stromal cells upon experimental stroke in rats. Brain Res. 2010; 1315:128-36.Google Scholar

  • 38. Zhao B, Liu JQ, Zheng Z, Zhang J, Wang SY, Han SC, Zhou Q, Guan H, Li C, Su LL, and Hu DH Human amniotic epithelial stem cells promote wound healing by facilitating migration and proliferation of keratinocytes via ERK, JNK and AKT signaling pathways. Cell Tissue Res. 2016; 365(1):85-99.Google Scholar

  • 39. Jin E, Kim TH, Han S, and Kim SW Amniotic epithelial cells promote wound healing in mice through high epithelialization and engraftment. J Tissue Eng Regen Med. 2015.Google Scholar

  • 40. Cargnoni A, Piccinelli EC, Ressel L, Rossi D, Magatti M, Toschi I, Cesari V, Albertini M, Mazzola S, and Parolini O Conditioned medium from amniotic membrane-derived cells prevents lung fibrosis and preserves blood gas exchanges in bleomycin-injured mice-specificity of the effects and insights into possible mechanisms. Cytotherapy. 2014; 16(1):17-32.CrossrefGoogle Scholar

  • 41. Cargnoni A, Ressel L, Rossi D, Poli A, Arienti D, Lombardi G, and Parolini O Conditioned medium from amniotic mesenchymal tissue cells reduces progression of bleomycin-induced lung fibrosis. Cytotherapy. 2012; 14(2):153-61.CrossrefGoogle Scholar

  • 42. Danieli P, Malpasso G, Ciuffreda MC, Cervio E, Calvillo L, Copes F, Pisano F, Mura M, Kleijn L, de Boer RA, Viarengo G, Rosti V, Spinillo A, Roccio M, and Gnecchi M Conditioned medium from human amniotic mesenchymal stromal cells limits infarct size and enhances angiogenesis. Stem Cells Transl Med. 2015; 4(5):448-58.Google Scholar

  • 43. Magatti M, Vertua E, De Munari S, Caro M, Caruso M, Silini A, Delgado M, and Parolini O Human amnion favours tissue repair by inducing the M1-to-M2 switch and enhancing M2 macrophage features. J Tissue Eng Regen Med. 2016.Google Scholar

  • 44. Lange-Consiglio A, Rossi D, Tassan S, Perego R, Cremonesi F, and Parolini O Conditioned medium from horse amniotic membrane-derived multipotent progenitor cells: immunomodulatory activity in vitro and first clinical application in tendon and ligament injuries in vivo. Stem Cells Dev. 2013; 22(22):3015-24.CrossrefGoogle Scholar

  • 45. Kim TH, Park YW, Ahn JS, Ahn JT, Kim SE, Jeong MB, Seo MS, Kang KS, and Seo KM Effects of conditioned media from human amniotic epithelial cells on corneal alkali injuries in rabbits. J Vet Sci. 2013; 14(1):61-7.CrossrefGoogle Scholar

  • 46. Wichayacoop T, Briksawan P, Tuntivanich P, and Yibchok-Anun S Anti- inflammatory effects of topical supernatant from human amniotic membrane cell culture on canine deep corneal ulcer after human amniotic membrane transplantation. Vet Ophthalmol. 2009; 12(1):28-35.CrossrefGoogle Scholar

  • 47. Ricci E, Vanosi G, Lindenmair A, Hennerbichler S, Peterbauer-Scherb A, Wolbank S, Cargnoni A, Signoroni PB, Campagnol M, Gabriel C, Redl H, and Parolini O Anti-fibrotic effects of fresh and cryopreserved human amniotic membrane in a rat liver fibrosis model. Cell Tissue Bank. 2013; 14(3):475-88.CrossrefGoogle Scholar

  • 48. Sant’Anna LB, Cargnoni A, Ressel L, Vanosi G, and Parolini O Amniotic membrane application reduces liver fibrosis in a bile duct ligation rat model. Cell Transplant. 2011; 20(3):441-53.CrossrefGoogle Scholar

  • 49. Cargnoni A, Di Marcello M, Campagnol M, Nassuato C, Albertini A, and Parolini O Amniotic membrane patching promotes ischemic rat heart repair. Cell Transplant. 2009; 18(10):1147-59.Google Scholar

  • 50. Magatti M, De Munari S, Vertua E, Gibelli L, Wengler GS, and Parolini O Human amnion mesenchyme harbors cells with allogeneic T-cell suppression and stimulation capabilities. Stem Cells. 2008; 26(1):182-92.CrossrefGoogle Scholar

  • 51. Magatti M, De Munari S, Vertua E, Nassauto C, Albertini A, Wengler GS, and Parolini O Amniotic mesenchymal tissue cells inhibit dendritic cell differentiation of peripheral blood and amnion resident monocytes. Cell Transplant. 2009; 18(8):899-914.Google Scholar

  • 52. Magatti M, Caruso M, De Munari S, Vertua E, De D, Manuelpillai U, and Parolini O Human Amniotic Membrane-Derived Mesenchymal and Epithelial Cells Exert Different Effects on Monocyte-Derived Dendritic Cell Differentiation and Function. Cell Transplant. 2015; 24(9):1733-52.Google Scholar

  • 53. Rossi D, Pianta S, Magatti M, Sedlmayr P, and Parolini O Characterization of the conditioned medium from amniotic membrane cells: prostaglandins as key effectors of its immunomodulatory activity. PLoS One. 2012; 7(10):e46956.Google Scholar

  • 54. Pianta S, Bonassi Signoroni P, Muradore I, Rodrigues MF, Rossi D, Silini A, and Parolini O Amniotic membrane mesenchymal cells-derived factors skew T cell polarization toward Treg and downregulate Th1 and Th17 cells subsets. Stem Cell Rev. 2015; 11(3):394-407.Google Scholar

About the article

Published Online: 2017-12-28

Published in Print: 2017-12-28

Citation Information: The EuroBiotech Journal, Volume 1, Issue s2, Pages 147–150, ISSN (Online) 2564-615X, DOI: https://doi.org/10.24190/ISSN2564-615X/2017/S2.08.

Export Citation

© 2018. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in