Jump to ContentJump to Main Navigation
Show Summary Details
More options …

The EuroBiotech Journal


4 Issues per year

Open Access
See all formats and pricing
More options …

Contributions of biotechnology to meeting future food and environmental security needs

Kevan M.A. Gartland / Jill S. Gartland
Published Online: 2018-02-06 | DOI: https://doi.org/10.2478/ebtj-2018-0002


Biotechnology, including genetic modifications, can play a vital role in helping to meet future food and environmental security needs for our growing population. The nature and use of biotechnology crops are described and related to aspects of food security. Biotechnological applications for food and animal feed are described, together with trends on global adoption of these crops. The benefits of biotechnology crops through increased yield, reduced pesticide use and decreased environmental damage are discussed. Examples of biotechnology crops which do not involve genetic modification are also described. Applications of biotechnology to drought and salt tolerance, and biofortification in which micronutrient content is enhanced are discussed. Emergent technologies such as RNA spraying technology, use of genome editing in agriculture and future targets for improved food and environmental security are considered.

Keywords: food supply; environmental security; biotechnology crops; biofortification; ‘Golden’ crops; micronutrients; regulation of gene expression; human health & nutrition


  • 1. Food and Agriculture Organisation of the United Nations. FAO Success Stories on Climate Smart Agriculture. FAO I3871E/1/05.14.Google Scholar

  • 2. International Society for the Acquisition of Agricultural Applications. GM Crops and the Environment. Pocket K 4 2017.Google Scholar

  • 3. Federoff NV. Food in a future of 10 billion. Agriculture and Food Security. 2015; 4: 11.Google Scholar

  • 4. Food and Agriculture Organisation, United Nations Development Programme, World Programme for Food. The State of Food Insecurity in the World. http://www.fao.org/3/a-i4646e.pdf.2015.Google Scholar

  • 5. International Society for the Acquisition of Agricultural Applications. Can Mother earth feed 9 + Billion by 2050? ISAAA Infographic 1. 2016. www.isaaa.orgGoogle Scholar

  • 6. International Society for the Acquisition of Agricultural Applications. Contribution of Biotech Crops to Sustainability. ISAAA Infographic 2. 2017. www.isaaa.orgGoogle Scholar

  • 7. Klumper W, Qaim M. A Meta-analysis of the impacts of genetically modified crops. PLoS ONE 2014; 9(11): e111629.Google Scholar

  • 8. Brookes G, Barfoot P. GM Crops: global socio-economic and environmental impacts 1996-2015. 2017. PG Economics Ltd., UK, pp. 1-201.Google Scholar

  • 9. James C. 20th Anniversary (1996-2015) of the Global Commercialisation of Biotech Crops and Biotech Crop Highlights in 2015. ISAAA Brief 51 2015. www.isaaa.orgGoogle Scholar

  • 10. James C. ISAAA Brief 52. 2016. www.isaaa.org Google Scholar

  • 11. Stua M, Dearnley E What will BREXIT mean for the climate? The Conversation 2017; https://theconversation.com/what-will-brexit- mean-for-the-climate-clue-it-doesnt-look-good-87476Google Scholar

  • 12. Gartland KMA. Responding to climate change: barriers to progress and green opportunities. Biochemist 2006; October 54-55.Google Scholar

  • 13. Ruane J, Sonnino A. Agricultural biotechnologies in developing countries and their possible contribution to food security. J. Biotechnol. 2011; 156: 356-363.Google Scholar

  • 14. Gartland KMA, Gartland JS. Green biotechnology for food security in climate change. Reference Module in Food Sciences 2016; Elsevier pp.1-9. http://dx.doi.org/10.1016/B978-0-08-100596-5.03071-7CrossrefGoogle Scholar

  • 15. US National Academies of Sciences, Engineering & Medicine. Genetically engineered crops: experiences and prospects. 2016. https://doi.org/10.17226/23395CrossrefGoogle Scholar

  • 16. Royal Society. GM Plants: questions and answers. 2016; DES3710. https://royalsociety.org/~/media/policy/projects/gm-plants/gmplant-q-and-a.pdfGoogle Scholar

  • 17. American Council for Science and Health. Meta-analysis shows GM crops reduce pesticide use by 37 percent.Google Scholar

  • 18. Guo D, Chen F, Inoue K et al. Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl coA 3-O-methyltransferase in transgenic alfalfa: impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell 2001; 13: 73-88.CrossrefGoogle Scholar

  • 19. Wechsler SJ, Milkove D. Genetically Modified Alfalfa Production in the United States. 2017; United States Department of Agriculture Economic Research Service. https://www.ers.usda.gov/amber-waves/2017/may/genetically-modified-alfalfa-production-in-the-united-states/Google Scholar

  • 20. Brookes G, Taheripour F, Tyner WE. The contribution of glyphosate to agriculture and potential impact of restrictions on use at the global level. GM Crops and Food 2017; https://doi.org/10.1080/21645698.2017.1390637CrossrefGoogle Scholar

  • 21. United States Dept. of Agriculture Biotechnology Consultation - Note to File BNF 000153 2017. https://www.fda.gov/Food/IngredientsPackagingLabeling/GEPlants/Submissions/ucm542339Google Scholar

  • 22. Rommens CM, Yan H, Swords K et al. Low-acrylamide French fries and potato chips. Plant Biotechnology Journal 2008; 6:843-853.CrossrefGoogle Scholar

  • 23. Simplot Plant Sciences 2017. Innate second generation potatoes with late blight protection receive EPA and FDA clearances. http://www.simplot.com/plant_sciencesGoogle Scholar

  • 24. Halterman D, Guenthner J, Collinge S et al. Biotech crops in the 21st century: 20 years since the first biotech potato. Am. J. Potato Res. 2016; 93: 1-20.CrossrefGoogle Scholar

  • 25. Armen, J. Arctic apples: Leading the ‘next wave’ of biotech foods with consumer benefits. Australasian Biotechnology, 2015; 25: 50. No. 2, http://search.informit.com.au/documentSummary;dn=296007511823496;res=IELHEAISSN:1036-7128.Google Scholar

  • 26. Smyth SJ. Canadian regulatory perspectives on genome engineered crops. GM Crops and Food 2017; 8: 35-43.Google Scholar

  • 27. Silva KJP, Brunings AM, Pereira JA et al. The Arabidopsis ELP/ELO3 and ELP4/ELO1 genes enhance disease resistance in Fragaria vesca. BMC Plant Biology 2017; 17:230.Google Scholar

  • 28. Van Der Straeten D, Fitzpatrick TB, De Steur H Biofortification of crops: achievements future challenges, socio-economic, health and ethical aspects. Curr. Op. Biotech. 2017; 44:vii-x.Google Scholar

  • 29. Barreca N. Biofortification pioneers win 2016 World Food Prize for fight against malnutrition. 2016; World Food Prize Organisation 2016; https://www.worldfoodprize.org/index.cfm/87428/40322/biofortification_pioneers_win_2016world_food_prizeGoogle Scholar

  • 30. Blancquaert D, Van Daele J, Strobbe S et al. Improving folate (vitamin B9) stability in biofortified rice through metabolic engineering. Nature Biotechnology 2015; 33: 1076-1078.Google Scholar

  • 31. Li K-T, Moulin M, Mangel N et al. Increased bioavailable vitamin B6 in field grown transgenic cassava for dietary sufficiency. Nature Biotechnology 2015; 33: 1029-1032.Google Scholar

  • 32. Giuliano G. Provitamin A biofortification of crop plants: a gold rush with many miners. Current Opinion in Biotechnology 2017; 44: 169-182.CrossrefGoogle Scholar

  • 33. Potrykus I. “Golden Rice”, a GMO-product for public good, and the consequences of GE-regulation. J of Plant biochemistry and biotechnology 2012; 21S: 68-75.Google Scholar

  • 34. Golden Rice Project 2017. http://www.goldenrice.orgGoogle Scholar

  • 35. Stone GD, Glover D. Disembedding grain: Golden rice, the Green Revolution and heirloom seeds in the Philippines. Agriculture and Human Values 2017; 34: 87-102.CrossrefGoogle Scholar

  • 36. Tang G, Qin J, Dolnikowski GG et al. Golden Rice is an effective source of vitamin A. American Journal of Clinical Nutrition 2009; 89: 1776-1783.Google Scholar

  • 37. De Steur H, Mehta S, Gellynck X et al. GM biofortified crops: potential effects on targeting the micronutrient intake gap in human populations. Current opinion in Biotechnology 2017; 44: 181-188.Google Scholar

  • 38. Paine JA, Shipton CA, Chaggar S, et al. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nature Biotechnology 2005; 23:482-487.CrossrefGoogle Scholar

  • 39. Brooks S. Biofortification: Lessons from the Golden Rice Project. Food Chain 2013; 3: 77-88.Google Scholar

  • 40. Kava R. All I want for Christmas is Golden Rice. American Council for Science and Health News 2017; 08.12.2017. https://www.acsh.org/news/2017/12/08/all-i-want-christmas-golden-rice-12251Google Scholar

  • 41. World Health Organisation. Micronutrient deficiencies: Vitamin A deficiency 2017; http://www.who.int/nutrition/topics/vad/en/Google Scholar

  • 42. UNICEF Data. East Asia and the Pacific achieved the highest twodose coverage with vitamin A supplements of all regions in 2015. December 2017; https://data.unicef.org/topic/nutrition/vitamin-a-deficiency/Google Scholar

  • 43. Kava R. Move over, Golden rice- Golden potatoes are on the way. American Council for Science and Health News 2017; 13.11.2017. https://www/acsh.org/news/2017/11/13/move-over-goldenrice-%2%80%94-golden-potatoes-are-way-12136Google Scholar

  • 44. Chitchumroonchokchai C, Diretto G, Parisi B et al. Potential of golden potatoes to improve vitamin a and vitamin E status in developing countries. PLoSONE 2017; 12 (11): e0187102. https://doi.org/10.1371/journal.pone.0187102CrossrefGoogle Scholar

  • 45. Che P, Zhao Z-Y, Glassman K et al. Elevated vitamin E content improves all-trans β-carotene accumulation and stability in biofortified sorghum. PNAS (USA) 2016; 113: 11040-11045Google Scholar

  • 46. Report G. Investing in the future- A united call to action on vitamin and mineral deficiencies. 2009; http://www.unitedcalltoaction.org/index.aspGoogle Scholar

  • 47. Blancquaert D, De Steur H, Gellynck X et al. Metabolic engineering of micronutrients in crop plants. Annals New York academy Sciences (2017) 1390: 59-73.Google Scholar

  • 48. Waltz E. Vitamin A Super Banana in human trials. Nature Biotechnology 2014; 32: 857.CrossrefGoogle Scholar

  • 49. Paul J-Y, Khanna H, Kleidon J et al. Golden bananas in the field: elevated pro-vitamin A from the expression of a single banan transgene. Plant Biotech. J. 2017; 15: 520-532.Google Scholar

  • 50. Mbabazi R. Molecular characterisation and carotenoid quantification of pro-vitamin A biofortified genetically modified bananas in Uganda. PhD Thesis. 2015; Queensland University of Technology.Google Scholar

  • 51. Buah S, Mlalazi B., Khanna H, Dale JL and Mortimer CL. The quest for golden bananas: investigating carotenoid regulation in a Fe’i group Musa cultivar. J. Agric. Food Chem. 2016; 64: 3176-3185.CrossrefGoogle Scholar

  • 52. Dhandapani R, Singh VP, Arora A et al. Differential accumulation of β-carotene and tissue specific expression of phytoene synthase (MaPSy) gene in banana (Musa sp.) cultivars. J Food Sci. technol. 2017; 54: 4416-4426.CrossrefGoogle Scholar

  • 53. Water Efficient Maize for Africa. 2017; https://wema.aatf-africa.org/about-wema-projectGoogle Scholar

  • 54. Xu J, Yuan Y, Xu Y et al. Identification of candidate genes for drought tolerance by whole-genome resequencing in maize. BMC Plant Biology 2014; 14: 83.CrossrefGoogle Scholar

  • 55. African Agricultural Technology Foundation. DroughtTEGO WE1101 Drought-tolerant maize hybrid. 2017; http://www.aatf-africa.orgGoogle Scholar

  • 56. Morsy M. Microbial symbionts: a potential bio-boom. J. Investig. Genomics 2015; 2: 00015.Google Scholar

  • 57. Castiglioni P, Warner D, Bensen RJ et al. Bacterial RNA chaperones confer abiotic stress tolerance. Plant Physiology. 2008; 147: 446-455.Google Scholar

  • 58. Nuccio ML, Wu J, Mowers R et al. Expression of tehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nature Biotechnology. 2015; 33: 862-869.Google Scholar

  • 59. Adee E. Drought-tolerant corn hybrids yield more in droughtstressed environments with no penalty in non-stressed environments. Frontiers in Plant Science. 2016; 13 Oct 2016.Google Scholar

  • 60. Rea-hybrids. Introducing Genuity DroughtGard hybrids. 2017; http://www.rea-hybrids.comGoogle Scholar

  • 61. Siegfried BD, Hellmich RL. Understanding successful resistance management: the European corn borer and Bt corn in the United States. GM Crops Food. 2012; 3:184-193.Google Scholar

  • 62. Ammann K The impact of agricultural biotechnology on biodiversity. (2004) Botanic gardens, University of Bern.Google Scholar

  • 63. Salt tolerance of plants. University of Alberta Agriculture and Forestry (2017). http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/agdex3303Google Scholar

  • 64. Tilbrook J, Schilling RK, Berger B et al. Variation in shoot tolerance mechanisms not related to ion toxicity in barley. Functional Plant Biology (2017) 14: 1194-1206.Google Scholar

  • 65. Zou C, Chen A, Xiao L et al. A high-quality genome assembly of quinoa provides insightsinto the molecular basis of salt bladder- based salinity tolerance and exceptional nutritional value. Cell Research (2017) DOI: 10.1038/cr.2017.124.CrossrefGoogle Scholar

  • 66. Rakshit S. The Handbook of Plant Mutation Screening: Mining of natural and induced alleles. Wiley-VCH (2010) pp. 185-197.Google Scholar

  • 67. Takagi H, Tamiru M, Abe A et al. MutMap accelerates breeding of a salt-tolerant rice cultivar. Nature Biotechnology (2015) 33: 445-449.Google Scholar

  • 68. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-seq. Bioinformatics (2009)25: 1105-1109.CrossrefGoogle Scholar

  • 69. Goswani K, Tripathi A, Sanan-Mishra N. Comparative miRomics of salt-tolerant and salt-sensitive rice. J Integrative bioinformatics (2017) 2017002.Google Scholar

  • 70. Tan GC, Chan E, Molnar A et al. 5’-isomiR variation is of functional and evolutionary importance. Nucleic Acids Research (2104) 42: 9424-9435.Google Scholar

  • 71. Morin RD, O’Connor MD, Griffith M et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells”. Genome Research (2008); 18: 610-621.CrossrefGoogle Scholar

  • 72. Regalado A. The next great GMO debate. MIT Technology Review (2015) https: //www.technologyreview.com/s/540136/the-nextgreat- gmo-debateGoogle Scholar

  • 73. Shew AM, Danforth DM, Nalley LL et al. New innovations in agricultural biotech: consumer acceptance of topical RNAi in rice production. Food Control (2017) 81: 189-195.Google Scholar

  • 74. Shan Q, Wang Y, Li j et al. Genome editing in rice and wheat using the CRISPR/Cas9 system. Nature Protocols (2014) 9: 2395-2410.CrossrefGoogle Scholar

  • 75. Gartland KMA, Dundar M, Beccari T et al. Advances in biotechnology: genomics and genome editing. EuroBiotech Journal (2017) 1:1-8. Google Scholar

  • 76. Ricroch A, Clairand P, Harwood W Use of CRISPR systems in plant genome editing: toward new opportunities in agriculture. Emerging Topics in Life Sciences (2017) 1: 169-182.Google Scholar

  • 77. LeBlanc C, Zhang F, Mendez J et al. Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress. Plant Journal (2017) DOI: 10.1111/tpj.13782CrossrefGoogle Scholar

  • 78. Shen H, Zhong X, Zhao F et al. Overexpression of receptor-like kinase ERECTA improves thermotolerance in rice and tomato. Nature Biotechnology (2015) 33: 996-1003.Google Scholar

  • 79. Nuccio ML, Wu J, Mowers R et al. Expression of trehalose-6-phosphate phosphatase in maize ears improves yields in well-watered and drought conditions. Nature Biotechnology (2015) 33: 862-869.Google Scholar

  • 80. Yang X, Hu R, Tuskan GA et al. The Kalanchoe genome provides insights into crassulacean acid metabolism. Nature Communications (2017) 8: 1899.Google Scholar

About the article

Published Online: 2018-02-06

Published in Print: 2018-01-01

Citation Information: The EuroBiotech Journal, Volume 2, Issue 1, Pages 2–9, ISSN (Online) 2564-615X, DOI: https://doi.org/10.2478/ebtj-2018-0002.

Export Citation

© 2018. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in