Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Electrical, Control and Communication Engineering

The Journal of Riga Technical University

2 Issues per year

Open Access
Online
ISSN
2255-9159
See all formats and pricing
More options …

Design Aspects and Test of an Inductive Fault Current Limiter

Pedro Arsénio / Nuno Vilhena / Professor, João Murta-Pina / Professor, Anabela Pronto / Professor, Alfredo Álvarez
Published Online: 2014-05-17 | DOI: https://doi.org/10.2478/ecce-2014-0006

Abstract

Magnetic shielding inductive fault current limiters with high temperature superconducting tapes are considered as emerging devices that provide technology for the advent of modern power grids. The development of such limiters requires magnetic iron cores and leads to several design challenges regarding the constitutive parts of the limiter, namely the primary and secondary windings. Preliminary tests in a laboratory scale prototype have been carried out considering an assembly designed for simplicity in which the optimization of the magnetic coupling between the primary and secondary was not the main focus. This work addresses the design configuration of an inductive current limiter prototype regarding the assembly of the primary and secondary windings in the core. The prototype is based on a closed magnetic core wound by a primary, built from a normal electric conductor, and a short-circuited secondary, built from first generation superconducting tape. Four different design configurations are considered. Through experimental tests, the performance of such prototype is discussed and compared, in terms of normal and fault operation regimes. The results show that all the configurations assure effective magnetic shielding at normal operation regime, however, at fault operation regime, there are differences among configurations.

Keywords: Fault current limiters; High-temperature superconductors; Power grids; Short-circuit currents

References

  • [1] S. S. Kalsi, Applications of High Temperature Superconductors to Electric Power Equipment, 1st ed. John Wiley & Sons, Inc., 2011, p. 333.Google Scholar

  • [2] A. Hobl, W. Goldacker, B. Dutoit, L. Martini, A. Petermann, and P. Tixador, “Design and Production of the ECCOFLOW Resistive Fault Current Limiter,” IEEE Transactions on Applied Superconductivity, vol. 23, no. 3, pp. 5601804-5601804, Jun. 2013.Web of ScienceCrossrefGoogle Scholar

  • [3] J. M. Pina, P. Pereira, A. Pronto, P. Arsénio, and T. Silva, “Modelling and Simulation of Inductive Fault Current Limiters,” Physics Procedia, vol. 36, pp. 1248-1253, 2012.CrossrefGoogle Scholar

  • [4] P. Tixador, P, “Development of superconducting power devices in Europe,” Physica C: Superconductivity, vol. 470, no. 20, pp. 971-979, Jun. 2010.Web of ScienceGoogle Scholar

  • [5] H. Heydari, A. A. Abrishami, and M. Mordadi Bidgoli, “Comprehensive Analysis for Magnetic Shield Superconducting Fault Current Limiters,” IEEE Transactions on Applied Superconductivity, vol. 23, no. 5, pp. 5604610-5604610, Oct. 2013.CrossrefGoogle Scholar

  • [6] W.-S. Moon, J.-N. Won, J.-S. Huh, and J.-C. Kim, “A Study on the Application of a Superconducting Fault Current Limiter for Energy Storage Protection in a Power Distribution System,” IEEE Transactions on Applied Superconductivity, vol. 23, no. 3, pp. 5603404-5603404, Jun. 2013.CrossrefWeb of ScienceGoogle Scholar

  • [7] A. Hobl, W. Goldacker, B. Dutoit, L. Martini, A. Petermann, and P. Tixador, “Design and Production of the ECCOFLOW Resistive Fault Current Limiter,” IEEE Transactions on Applied Superconductivity, vol. 23, no. 3, pp. 5601804-5601804, Jun. 2013.Web of ScienceCrossrefGoogle Scholar

  • [8] L. Martini, M. Bocchi, M. Ascade, A. Valzasina, V. Rossi, C. Ravetta, and G. Angeli, “Live-Grid Installation and Field Testing of the First Italian Superconducting Fault Current Limiter,” IEEE Transactions on Applied Superconductivity, vol. 23, no. 3, pp. 5602504-5602504, Jun. 2013.Web of ScienceCrossrefGoogle Scholar

  • [9] R. Dommerque, S. Krämer, A. Hobl, R. Böhm, M. Bludau, J. Bock, D. Klaus, H. Piereder, A. Wilson, T Krüger, G Pfeiffer, K Pfeiffer, and S. Elschner, “First commercial medium voltage superconducting faultcurrent limiters: production, test and installation,” Superconductor Science and Technology, vol. 23, no. 3, pp. 034020, Feb. 2010.Web of ScienceCrossrefGoogle Scholar

  • [10] W. Paul, M. Lakner, J. Rhyner, P. Unternährer, T. Baumann, M. Chen, L. Widenhorn, and A. Guérig, “Test of 1.2 MVA high- superconducting fault current limiter,” Supercond. Sci. Technol., vol. 10, no. 12, pp. 914-918, Dec. 1997.Google Scholar

  • [11] C. Y. Shigue, T. T. da Cruz, J. S. Lamas, C. A. Baldan, and E. R. Filho, “Analysis of the E-J Curve of HTS Tapes Under DC and AC Magnetic Fields at 77 K,” IEEE Transactions on Applied Superconductivity, vol. 19, no, 3, pp. 3332-3335, Jun. 2009.Google Scholar

  • [12] J. S. Lamas, C. Baldan, C. Y. Shigue, A. Silhanek, A., and V. Moshchalkov, “Electrical and Magnetic Characterization of BSCCO and YBCO HTS Tapes for Fault Current Limiter Application,” IEEE Transactions on Applied Superconductivity, vol. 21, no. 3, pp. 3398-3402, Jun. 2011.CrossrefWeb of ScienceGoogle Scholar

  • [13] J. C. Llambes, D. Hazelton, J. Duval, M. Albertini, S. Repnoy, V Selvamanickam, G. Majkic, I. Kesign, J. Langston, M. Steurer, F. Bogdan, J. Hauer, D. Crook, S. Ranner, T. Williams, and M. Coleman, “Performance of 2G HTS Tapes in Sub-Cooled LN2 for Superconducting Fault Current Limiting Applications,” IEEE Transactions on Applied Superconductivity, vol. 21, no.3, pp. 1206-1208, Jun. 2011.CrossrefGoogle Scholar

  • [14] Y. Shiohara, M. Yoshizumi, Y. Takagi, and T. Izumi, “Future prospects of high Tc superconductors-coated conductors and their applications,” Physica C: Superconductivity, vol. 484, pp. 1-5, Mar. 2012.Web of ScienceGoogle Scholar

  • [15] P. Arsénio, T. Silva, N. Vilhena, J. M. Pina, and A. Pronto, “Analysis of Characteristic Hysteresis Loops of Magnetic Shielding Inductive Fault Current Limiters,” IEEE Transactions on Applied Superconductivity, vol. 23, no. 3, pp. 5601004-5601004, Jun. 2013.CrossrefWeb of ScienceGoogle Scholar

  • [16] A. Usoskin, F. Mumford, R. Dietrich, A. Handaze, B. Prause, A. Rutt, and K. Schlenga, “Inductive Fault Current Limiters: Kinetics of Quenching and Recovery,” IEEE Transactions on Applied Superconductivity, vol. 19, no. 3, pp. 1859-1862, Jun. 2009.Web of ScienceCrossrefGoogle Scholar

  • [17] J. M. Pina, M. V. Neves, and A. L. Rodrigues, “High Temperature Superconducting Fault Current Limiters as Enabling Technology in Electrical Grids with Increased Distributed Generation Penetration,” First IFIP WG 5.5/SOCOLNET Doctoral Conference on Computing, Electrical and Industrial Systems, vol. 314, pp. 427- 434, 2010.Google Scholar

  • [18] C. Gandioli, M. Alvarez-Herault, P. Tixador, N. Hadjsaid, and D.-M. R. Medina, “Innovative Distribution Networks Planning Integrating Superconducting Fault Current Limiters,” IEEE Transactions on Applied Superconductivity, vol. 23, no. 3, pp. 5603904-5603904, Jun. 2013.CrossrefGoogle Scholar

  • [19] Y. Shiohara, M. Yoshizumi, Y. Takagi, and T. Izumi, “Future prospects of high Tc superconductors-coated conductors and their applications,” Phys. C Supercond., vol. 484, pp. 1-5, Jan. 2013.Google Scholar

  • [20] Heydari, H., Faghihi, F., Sharifi, R., and Poursoltanmohammadi, A. H., “Superconducting technology for overcurrent limiting in a 25 kA current injection system,” Superconductor Science and Technology, vol. 21, no. 9, pp. 095016, Jul. 2008.Web of ScienceCrossrefGoogle Scholar

  • [21] A. Usoskin, F. Mumford, R. Dietrich, A. Handaze, B. Prause, A. Rutt, and K. Schlenga, “Inductive Fault Current Limiters: Kinetics of Quenching and Recovery,” IEEE Transactions on Applied Superconductivity, vol. 19, no. 3, pp. 1859-1862, Jun. 2009.Web of ScienceCrossrefGoogle Scholar

  • [22] M. Noe, and M. Steurer, “High-temperature superconductor fault current limiters: concepts, applications, and development status,” Superconductor Science and Technology, vol. 20, no. 3, R15-R29, Jan. 2007.CrossrefWeb of ScienceGoogle Scholar

  • [23] S. Kozak, T. Janowski, G. Wojtasiewicz, J. Kozak, B. Kondratowicz-Kucewicz, and M. Majka, “The 15 kV Class Inductive SFCL,” IEEE Transactions on Applied Superconductivity, vol. 20, no. 3, pp. 1203-1206, Jun. 2010.Web of ScienceGoogle Scholar

  • [24] J. Kozak, M. Majka, S. Kozak, and T. Janowski, “Design and Tests of Coreless Inductive Superconducting Fault Current Limiter,” IEEE Transactions on Applied Superconductivity, vol. 22, no. 3, pp. 5601804-5601804, Jun. 2012.CrossrefWeb of ScienceGoogle Scholar

  • [25] G. Wojtasiewicz, T. Janowski, S. Kozak, J. Kozak, M. Majka, and B. Kondratowicz-Kucewicz, “Experimental Investigation of a Model of a Transformer-Type Superconducting Fault Current Limiter With a Superconducting Coil Made of a 2G HTS Tape,” IEEE Transactions on Applied Superconductivity, vol. 24, no. 3, pp. 1-5, Jun. 2014.CrossrefWeb of ScienceGoogle Scholar

  • [26] V. Meerovich, V. Sokolovsky, and I. Vajda, “Calculation principles for a superconducting current-limiting transformer,” Superconductor Science and Technology, vol. 20, no. 10, pp. 1046-1053, 2007.CrossrefWeb of ScienceGoogle Scholar

  • [27] Y. Shirai, K. Fujikawa, T. Kitagawa, M. Shiotsu, H. Hatta, S. Muroya, and T. Nitta, "Study on recovery time of a superconducting fault current limiter with adjustable trigger current level," IEEE Transactions on Applied Superconductivity, vol. 11, no. 1, pp. 2086-2089, Mar. 2001.Web of ScienceGoogle Scholar

  • [28] J. Kozak, M. Majka, S. Kozak, and T. Janowski, “Comparison of Inductive and Resistive SFCL,” IEEE Transactions on Applied Superconductivity, vol. 23, no. 3, pp. 5600604-5600604, Jun. 2013. Web of ScienceCrossrefGoogle Scholar

About the article

Published Online: 2014-05-17

Published in Print: 2014-05-01


Citation Information: Electrical, Control and Communication Engineering, ISSN (Online) 2255-9159, DOI: https://doi.org/10.2478/ecce-2014-0006.

Export Citation

© Riga Technical University. This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
A Usoskin, V V Rao, R Dietrich, A Rutt, and K Schlenga
IOP Conference Series: Materials Science and Engineering, 2017, Volume 171, Page 012119

Comments (0)

Please log in or register to comment.
Log in