Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Ecological Chemistry and Engineering S

The Journal of Society of Ecological Chemistry and Engineering

4 Issues per year

IMPACT FACTOR 2016: 0.717
5-year IMPACT FACTOR: 0.842

CiteScore 2016: 0.74

SCImago Journal Rank (SJR) 2016: 0.231
Source Normalized Impact per Paper (SNIP) 2016: 0.628

Open Access
See all formats and pricing
More options …

Removal of arsenic compounds with peat, peat-based and synthetic sorbents / Usuwania związków arsenu za pomocą torfu, sorbentów na bazie torfu i sorbentów syntetycznych

Linda Ansone
  • Department of Environmental Science, University of Latvia, Raina blvd. 19, Riga, LV 1586, Latvia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Linda Eglite
  • Department of Environmental Science, University of Latvia, Raina blvd. 19, Riga, LV 1586, Latvia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maris Klavins
  • Corresponding author
  • Department of Environmental Science, University of Latvia, Raina blvd. 19, Riga, LV 1586, Latvia, phone +371 67334096, fax +371 7332704
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-11-13 | DOI: https://doi.org/10.2478/v10216-011-0037-4


Arsenic contamination of waters is a global problem; therefore, new approaches for its removal are needed. Peat, peat modified with iron compounds, iron humates and polymeric cation exchangers modified with iron were prepared and tested for sorption of arsenic compounds in comparison with weakly basic anionites. The highest sorption capacity was observed when peat sorbents modified with iron compounds were used. Sorption of different arsenic speciation forms onto iron-modified peat sorbents was investigated as a function of pH and temperature. It was established that sorption capacity increases with a rise in temperature, and the calculation of sorption process thermodynamic parameters indicates the spontaneity of sorption process and its endothermic nature.


Skażenie wód arsenem jest problemem globalnym, dlatego potrzebne są nowe sposoby jego usuwania. Zbadano sorpcję związków arsenu przez torf, torf modyfikowany związkami żelaza, sole żelaza i kwasów humusowych oraz polimerowe kationity modyfikowane żelazem. Wyniki porównano z sorpcją związków arsenu przez anionity słabo zasadowe. Najwyższą wydajność sorpcji zaobserwowano dla torfowych sorbentów modyfikowanych związkami żelaza. Badano sorpcję różnych form specjacyjnych arsenu na sorbentach na bazie torfu modyfikowanych żelazem, w zależności od pH i temperatury. Stwierdzono wzrost pojemności sorpcyjnych tego materiału wraz ze wzrostem temperatury. Obliczone parametry termodynamiczne procesu sorpcji wskazują na samorzutność tego procesu i jego endotermiczność.

Keywords : peat; synthetic sorbents; arsenic; sorption; sorption model

Słowa kluczowe : torf; sorbenty syntetyczne; arsen; sorpcja; model sorpcji

  • [1] Spedding PJ. Peat Fuel. 1988;67(7):883-900.Google Scholar

  • [2] Twardowska I, Kyziol J, Goldrath T, Avnimelech Y. Adsorption of zinc onto peat from peatlands of Poland and Israel. J Geochem Explor. 1999;66:387-405.CrossrefGoogle Scholar

  • [3] Mohan D, Pittman AU. Arsenic removal from water/wastewater using adsorbents - A critical review. J Hazard Mater. 2007;142:1-53.Web of ScienceGoogle Scholar

  • [4] Zhang F, Itoh H. Iron oxide-loaded slag for arsenic removal from aqueous system. Chemosphere. 2005;60:319-325.CrossrefPubMedGoogle Scholar

  • [5] Nemade PD, Kadam AM, Shankar HS. Adsorption of arsenic from aqueous solution on naturally available red soil. J Environ Biol. 2009;30(4):499-504.PubMedGoogle Scholar

  • [6] Dupont L, Jolly G, Aplincourt M. Arsenic adsorption on lignocellulosic substrate loaded with ferric ion. Environ Chem Lett. 2007;5(3):125-129.CrossrefWeb of ScienceGoogle Scholar

  • [7] Anirudhan TS, Unnithan MR. Arsenic(V) removal from aqueous solutions using an anion exchanger from coconut coir pith and its recovery. Chemosphere. 2007;66:60-66.Web of SciencePubMedCrossrefGoogle Scholar

  • [8] Parga JR, Vazquez V, Moreno H. Thermodynamic studies of the arsenic adsorption on iron species generated by electrocoagulation. J Metallurgy. 2009; 9. DOI:10.1155/2009/286971.CrossrefGoogle Scholar

  • [9] Maji SK, Pal A, Pal T, Adak A. Adsorption thermodynamics of arsenic on Laterite soil. J Surf Sci Technol. 2007;22(3-4):161-176.Google Scholar

  • [10] Gu Z, Fang J, Deng B. Preparation and evaluation of GAC-based iron-containing adsorbents for arsenic removal. Environ Sci Technol. 2005;39:3833-3843.CrossrefPubMedGoogle Scholar

  • [11] DeMarco MJ, SenGupta AK, Greenleaf JE. Arsenic removal using polymeric/inorganic hybrid sorbent. Water Res. 2003;37:164-176.CrossrefPubMedGoogle Scholar

  • [12] Šīre J. Composition and properties of humic acids in raised bog peat. [PhD Thesis]. Riga: University of Latvia; 2010.Google Scholar

  • [13] Coates J. Interpretation of infrared spectra, a practical approach. In: Meyers RA, editor. Encyclopedia of Analytical Chemistry. Chichester: John Wiley and Sons Ltd; 2000.Google Scholar

  • [14] Ho Y, Ofomaja AE. Kinetics and thermodynamics of lead ion sorption on palm kernel fibre from aqueous solution. Process Biochem. 2005;40:3455-3461.CrossrefGoogle Scholar

  • [15] Vatutsina OM, Soldatov VS, Sokolova VI, Johann J, Bissen M, Weissenbacher A. A new hybrid (polymer/inorganic) fibrous sorbent for arsenic removal from drinking water. React Funct Polym. 2007;67:184-201.Web of ScienceCrossrefGoogle Scholar

  • [16] An B, Steinwinder TR, Zhao D. Selective removal of arsenate from drinking water using a polymeric ligand exchanger. Water Res. 2005;39:4993-5004.CrossrefPubMedGoogle Scholar

  • [17] Buschmann J, Kappeler A, Lindauer U, Kistler D, Berg M, Sigg L. Arsenite and arsenate binding to humic acids: influence of pH, type of humic acid, and aluminium. Environ Sci Technol. 2006;40:6015-6020.CrossrefPubMedGoogle Scholar

  • [18] Dambies L, Salinaro R, Alexandratos SD. Immobilized N-Methyl-d-glucamine as an arsenate-selective resin. Environ Sci Technol. 2004;38:6139-6146.CrossrefPubMedGoogle Scholar

  • [19] Wilson MA, Tran NH, Milev AS, Kannangara GSK, Volk H, Lu MGC. Nanomaterials in soils. Geoderma. 2008;146:291-302.CrossrefWeb of ScienceGoogle Scholar

  • [20] Partey F, Norman D, Ndur S, Nartey R. Arsenic sorption onto laterite iron concentrations: Temperature effect. J Colloid Interf. Sci. 2008;321:493-500.Web of ScienceGoogle Scholar

  • [21] Ramesh A, Lee DJ, Wong JWC. Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewater with low cost adsorbents. J Colloid Interf Sci. 2005;291:588-592.Google Scholar

About the article

Published Online: 2012-11-13

Published in Print: 2012-11-01

Citation Information: Ecological Chemistry and Engineering S, Volume 19, Issue 4, Pages 513–531, ISSN (Print) 1898-6196, DOI: https://doi.org/10.2478/v10216-011-0037-4.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in