Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Ecological Chemistry and Engineering S

The Journal of Society of Ecological Chemistry and Engineering

4 Issues per year


IMPACT FACTOR 2016: 0.717
5-year IMPACT FACTOR: 0.842

CiteScore 2016: 0.74

SCImago Journal Rank (SJR) 2016: 0.231
Source Normalized Impact per Paper (SNIP) 2016: 0.628

Open Access
Online
ISSN
1898-6196
See all formats and pricing
More options …

The Use Of Mosses In Biomonitoring Of Selected Areas In Poland And Spitsbergen In The Years From 1975 To 2014

WYKORZYSTANIE MCHÓW W BIOMONITORINGU WYBRANYCH OBSZARÓW W POLSCE I NA SPITSBERGENIE W LATACH 1975-2014

Andrzej Kłos
  • Corresponding author
  • Chair of Biotechnology and Molecular Biology, Opole University, ul. kard. B. Kominka 6, 45-032 Opole, Poland, phone +48 77 401 60 42
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zbigniew Bochenek / Jarle W. Bjerke
  • Norwegian Institute for Nature Research - NINA, FRAM - High North Research Centre for Climate and the Environment, PO Box 6606 Langnes, NO-9296 Tromsø
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bogdan Zagajewski
  • Department of Geoinformatics, Cartography and Remote Sensing, Faculty of Geography and Regional Studies, University of Warsaw, ul. Krakowskie Przedmieście 30, 00-927 Warszawa
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dariusz Ziółkowski / Zbigniew Ziembik
  • Chair of Biotechnology and Molecular Biology, Opole University, ul. kard. B. Kominka 6, 45-032 Opole, Poland, phone +48 77 401 60 42
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Małgorzata Rajfur
  • Chair of Biotechnology and Molecular Biology, Opole University, ul. kard. B. Kominka 6, 45-032 Opole, Poland, phone +48 77 401 60 42
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Agnieszka Dołhańczuk-Śródka
  • Chair of Biotechnology and Molecular Biology, Opole University, ul. kard. B. Kominka 6, 45-032 Opole, Poland, phone +48 77 401 60 42
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hans Tømmervik
  • Norwegian Institute for Nature Research - NINA, FRAM - High North Research Centre for Climate and the Environment, PO Box 6606 Langnes, NO-9296 Tromsø
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Paweł Krems
  • Chair of Biotechnology and Molecular Biology, Opole University, ul. kard. B. Kominka 6, 45-032 Opole, Poland, phone +48 77 401 60 42
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dominik Jerz
  • Chair of Biotechnology and Molecular Biology, Opole University, ul. kard. B. Kominka 6, 45-032 Opole, Poland, phone +48 77 401 60 42
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maria Zielińska
  • Chair of Biotechnology and Molecular Biology, Opole University, ul. kard. B. Kominka 6, 45-032 Opole, Poland, phone +48 77 401 60 42
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-09-19 | DOI: https://doi.org/10.1515/eces-2015-0011

Abstract

We have compared historical changes in concentrations of the heavy metals Mn, Ni, Cu, Zn, Cd and Pb accumulated in samples from the Polish woodlands of Beskidy and Karkonosze (S, SE Poland) and the north-east regions of the country, versus the relatively little polluted areas of Spitsbergen of the Svalbard Archipelago. We have combined the results from literature with new results from 2014. The regions of Beskidy and Karkonosze were the most exposed to heavy metals deposition. However, from 1975 to 2014 there was a considerable decrease of concentrations of Cu, Zn, Cd and Pb at all Polish sites, clearly signifying improvement of environmental quality. For example, the average Cd concentration in mosses samples collected in Karkonosze decreased from 0.002 mg/g in 1975 to 0.0006 mg/g in 2014. It is interesting to observe relatively large concentrations of nickel in moss samples collected in 2014 in the Svalbard archipelago, in the vicinity of Longyearbyen (average 0.018 mg/g) which most likely originate from local mine waste piles.

Abstrakt

Przeanalizowano historyczne zmiany stężeń metali ciężkich: Mn, Ni, Cu, Zn, Cd i Pb zakumulowanych w próbkach mchów pobieranych do badań w Polsce, na terenach leśnych Beskidów i Karkonoszy oraz w lasach północno-wschodniej części kraju, w odniesieniu do mało zanieczyszczonych obszarów Archipelagu Svalbard, którego największą wyspą jest Spitsbergen. Wyniki badań przedstawianych w literaturze uzupełniono wynikami badań własnych, prowadzonych w 2014 r. Wykazano, że spośród wymienionych obszary Beskidów oraz Karkonoszy były i są najbardziej narażone na depozycję metali ciężkich. Stwierdzono również, że na przestrzeni lat 1975-2014 nastąpiło znaczące zmniejszenie stężeń Cu, Zn, Cd i Pb w mchach porastających wszystkie analizowane obszary na terenie Polski, co świadczy o poprawie jakości środowiska. Dla przykładu, w próbkach mchów pobieranych na obszarze Karkonoszy w 1975 r. średnie stężenie Cd wynosiło 0,002 mg/g, natomiast w 2014 r. średnie stężenie Cd zakumulowanego w mchach było mniejsze od 0,0006 mg/g. Interesujące są stosunkowo duże stężenia niklu w próbkach mchów pobranych w 2014 r. na obszarze Archipelagu Svalbard w pobliżu Longyearbyen (średnia 0,018 mg/g).

Keywords: air pollutions; biomonitoring; heavy metals; mosses; Poland; Svalbard

Słowa kluczowe:: biomonitoring; metale ciężkie; mchy; Polska; Svalbard

References

  • [1] Głuszcz P, Zakrzewska K, Wagner-Doebler I, Ledakowicz S. Bioreduction of ionic mercury from wastewater in a fixed-bed bioreactor with activated carbon. Chem Pap. 2008;62(3):232-238. DOI: 10.2478/s11696-008-0017-z.Web of ScienceCrossrefGoogle Scholar

  • [2] Travnikov O. Contribution of the intercontinental atmospheric transport to mercury pollution in the Northern Hemisphere. Atmos Environ. 2005;39:7541-7548.CrossrefGoogle Scholar

  • [3] Wolterbeek B. Biomonitoring of trace element air pollution: principles possibilities and perspectives. Proc. of the International Workshop - BioMAP II. 28 August - 3 September 2000. Vienna, Austria; 2003:87-104.Google Scholar

  • [4] Markert B, Breure A, Zechmeister H. Bioindicators & Biomonitors: Principles. Concepts and Applications. Amsterdam: Elsevier; 2003.Google Scholar

  • [5] Smodiš B, Pignata ML, Saiki M, Cortés E, Bangfa N, Markert B, et al. Validation and application of plants as biomonitors of trace element atmospheric pollution - A co-ordinated effort in 14 countries. J Atmos Chem. 2004;49:3-13.CrossrefGoogle Scholar

  • [6] Markert B. Definitions and principles for bioindication and biomonitoring of trace metals in the environment. J Trace Elem Med Biol. 2007;21(S1):77-82. DOI: 10.1016/j.jtemb.2007.09.015.Web of ScienceCrossrefPubMedGoogle Scholar

  • [7] Wardencki W, editor. Bioanalityka w ocenie zanieczyszczeń środowiska. Gdańsk: CEEAM; 2004.Google Scholar

  • [8] Olszowski T, Tomaszewska B, Goralna-Wlodarczyk K. Air quality in non-industrialised area in the typical Polish countryside based on measurements of selected pollutants in immission and deposition phase. Atmos Environ. 2012;50:139-147. DOI: 10.1016/j.atmosenv.2011.12.049.Web of ScienceCrossrefGoogle Scholar

  • [9] Kłos A, Rajfur M, Wacławek M, Wacławek W. 137Cs transfer from local particulate matter to lichens and mosses. Nukleonika. 2009;54(4):297-303.Google Scholar

  • [10] Dołhanczuk-Śródka A, Majcherczyk T, Smuda M, Ziembik Z, Wacławek M. Spatial Cs-137 distribution in forest soil. Nukleonika. 2006;51(2):569-579.Google Scholar

  • [11] Rühling Å, Tyler G. An ecological approach to the lead problem. Botan Notis. 1968;121:321-342.Google Scholar

  • [12] Freitas MC, Reis MA, Alves LC, Wolterbeek HTh. Distribution in Portugal of some pollutants in the lichen Parmelia sulcata. Environ Pollut. 1999;106:229-235.Google Scholar

  • [13] Freitas MC, Reis MA, Marques AP, Almeida SM, Farinha MM, de Oliveira O, et al. Monitoring of environmental contaminants: 10 years of application of k0-INAA. J Radioanal Nucl Chem. 2003;257(3):621-625.Google Scholar

  • [14] Kłos A, Rajfur M, Šrámek I, Wacławek M. Use of lichen and moss in assessment of forest contamination with heavy metals in Praded and Glacensis Euroregions (Poland and Czech Republic). Water Air Soil Pollut. 2011;222:367-376. DOI: 10.1007/s11270-011-0830-9.Web of ScienceCrossrefGoogle Scholar

  • [15] Kłos A, Rajfur M, Šrámek I, Wacławek M. Mercury concentration in lichen, moss and soil samples collected from the forest areas of Praded and Glacensis Euroregions (Poland and Czech Republic). Environ Monit Assess. 2012;184:6765-6774. DOI: 10.1007/s10661-011-2456-1.CrossrefWeb of ScienceGoogle Scholar

  • [16] Kłos A, Rajfur M, Wacławek M, Wacławek W, Frontasyeva MV, Pankratova JS. The influence of unidentified pollution sources on the irregularity of biomonitoring tests results. Water Air Soil Pollut. 2008;191:345-352. DOI: 10.1007/s11270-008-9629-8.Web of ScienceCrossrefGoogle Scholar

  • [17] Matuszkiewicz JM. Potencjalna roślinność naturalna Polski (Potential natural vegetation of Poland). Warszawa: IGiPZ PAN; 2008.Google Scholar

  • [18] Troc M, Jelonek A, editors. Svalbard - Encyklopedia Geograficzna Świata - tom V Europa. Kraków: OPRESS; 1996.Google Scholar

  • [19] Nowosielski L. Klimat Spitsbergenu. Gazeta Obserwatora IMGW. 2004;2:14-17.Google Scholar

  • [20] Maciejowski W. Walory turystyczne i formy turystyki w archipelagu Svalbard (Norwegia). Studia nad turystyką. Prac geograf regional. 2007: Kraków: IGiGP UJ; 123-134.Google Scholar

  • [21] Araźny A. Bioklimat Arktyki Norweskiej i jego zmienność w okresie 1971-2000. Toruń: Wyd Nauk Uniwersytetu Mikołaja Kopernika: 2008.Google Scholar

  • [22] Johansen BF, Prestvold K, Overrein Ø. The Cruise Handbook for Svalbard. Tromsø: Norwegian Polar Institute; 2011.Google Scholar

  • [23] AMAP Assessment 2006: Acidifying Pollutants, Arctic Haze, and Acidification in the Arctic, Oslo: Arctic Monitoring and Assessment Programme; 2006.Google Scholar

  • [24] Gabrielsen GW, Evenset A, Frantzen S, Gwynn J, Hallanger IG, Kallenborn R, et al. MOSJ statusrapport 2011 Miljøgifter. Norsk Polarinstitutt Rapportserie 137. Norwegian Polar Institute; 2011.Google Scholar

  • [25] Elberling B, Søndergaard J, Jensen LA, Schmidt LB, Hansen BU, Asmund, G, et al. Arctic vegetation damage by winter-generated coal mining pollution released upon thawing. Environ Sci Technol. 2007;41:2407-2413.Web of ScienceCrossrefPubMedGoogle Scholar

  • [26] Askaer L, Schmidt LB, Elberling B, Asmund G, Jónsdóttir IS. Environmental impact on an Arctic soil-plant system resulting from metals released from coal mine waste in Svalbard (78°N). Water Air Soil Pollut. 2008;195:99-114.Web of ScienceGoogle Scholar

  • [27] Headley AD. Heavy metals in peat from the high Arctic. Sci Total Environ. 1995;177: 105-111.Google Scholar

  • [28] Grodzińska K. Mosses as bioindicators of heavy metal pollution in polish national parks. Water Air Soil Pollut. 1978;9:83-97.Google Scholar

  • [29] Grodzińska K, Szarek G, Godzik B. Heavy metal deposition in polish national parks - changes during ten years. Water Air Soil Pollut. 1990;49:409-419.Google Scholar

  • [30] Herpin U, Berlekamp J, Markert B, Wolterbeek B, Grodzińska K, Siewers U, et al. The distribution of heavy metals in a transect of the three states the Netherlands, Germany and Poland determined with the aid of moss monitoring. Sci Total Environ. 1996;187:185-198.Google Scholar

  • [31] Grodzińska K, Szarek-Łukaszewska G, Godzik B. Survey of heavy metal deposition in Poland using mosses as indicators. Sci Total Environ. 1999;229:41-51Google Scholar

  • [32] Grodzińska K, Szarek-Łukaszewska G. Response of mosses to the heavy metal deposition in Poland - an overview. Environ Pollut. 2001;114:443-451.Google Scholar

  • [33] Malzahn E. Biomonitoring środowiska leśnego Puszczy Białowieskiej. Ochr Środow Zasob Natural. 2009;40:439-447.Google Scholar

  • [34] Malzahn E, Wójcik J. Metody stosowane w bioindykacji środowiska leśnego Puszczy Białowieskiej. Acta Agrophys. 2012;19(2):355-364.Google Scholar

  • [35] Grodzińska K, Frontasyeva M, Szarek-Łukaszewska G, Klich M, Kucharska-Fabiś A, Gundorina SF, et al. Trace element contamination in industrial regions of Poland studied by moss monitoring. Environ Monit Assess. 2003;87:255-270.Google Scholar

  • [36] Wojtuń B, Samecka-Cymerman A, Kolon K, Kempers AJ. Decreasing concentrations of metals in Sphagnum mosses in ombrotrophic mires of the Sudety mountains (SW Poland) since late 1980s. Chemosphere. 2013;91:1456-1461.Web of ScienceGoogle Scholar

  • [37] Grodzińska K, Godzik B. Heavy metals and sulphur in mosses from southern Spitsbergen. Polar Res. 1991;9(2):133-140.CrossrefGoogle Scholar

  • [38] Jóźwik Z. Heavy metals in tundra plants of the Bellsund in West Spitsbergen, investigated in the years 1987-1995. Pol Polar Res. 2000;21(1):43-54.Google Scholar

  • [39] Drbal K, Elster J, Komárek J. Heavy metals in water, ice and biological material from Spitsbergen, Svalbard. Polar Res. 1992;11(2):99-101.CrossrefGoogle Scholar

  • [40] Węgrzyn M, Lisowska M, Nicia P. The value of the terricolous lichen Cetrariella delisei in the biomonitoring of heavy-metal levels in Svalbard. Pol Polar Res. 2013;34(4):375-382. DOI: 10.2478/popore-2013-0022.CrossrefWeb of ScienceGoogle Scholar

  • [41] Samecka-Cymerman A, Wojtuń B, Kolon K, Kempers AJ. Sanionia uncinata (Hedw.) loeske as bioindicator of metal in polar regions. Polar Biol. 2011;34:381-388. DOI: 10.1007/s00300-010-0893-x.CrossrefWeb of ScienceGoogle Scholar

  • [42] Wojtuń B, Samecka-Cymerman A, Kolon K, Kempers AJ, Skrzypek G. Metals in some dominant vascular plants. Mosses; Lichens, algae and the biological soil crust in various types of terrestrial tundra. SW Spitsbergen. Norway. Polar Biol. 2013; 36:1799-1809. DOI 10.1007/s00300-013-1399-0.CrossrefWeb of ScienceGoogle Scholar

  • [43] Olszowski T, Bożym M. Pilot study on using an alternative method of estimating emission of heavy metals from wood combustion. Atmos Environ. 2014;94:22-27, DOI: 10.1016/j.atmosenv.2014.05.011.Web of ScienceCrossrefGoogle Scholar

  • [44] Tømmervik H, Høgda KA, Solheim I. Monitoring vegetation changes in Pasvik (Norway) and Pechenga in Kola Peninsula (Russia) using multitemporal Landsat MSS/TM data. Remote Sensing of Environ. 2003;85:370-388.Google Scholar

  • [45] Bjerke JW, Tømmervik H, Finne TE, Jensen H, Lukina N, Bakkestuen V. Epiphytic lichen distribution and plant leaf heavy metal concentrations in Russian-Norwegian boreal forests influenced by air pollution from nickel-copper smelters. Boreal Environ Res. 2006;11:441-450. A.Google Scholar

  • [46] Pollock TM, Tin S. Nickel-based super-alloys for advanced turbine engines: chemistry, microstructure, and properties. J Propul Power. 2006;22(2):361-374.CrossrefGoogle Scholar

About the article

Published Online: 2015-09-19

Published in Print: 2015-06-01


Citation Information: Ecological Chemistry and Engineering S, ISSN (Online) 1898-6196, DOI: https://doi.org/10.1515/eces-2015-0011.

Export Citation

© Andrzej Kłos et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Lucie Kupková, Lucie Červená, Renáta Suchá, Lucie Jakešová, Bogdan Zagajewski, Stanislav Březina, and Jana Albrechtová
European Journal of Remote Sensing, 2017, Volume 50, Number 1, Page 29

Comments (0)

Please log in or register to comment.
Log in