Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Ecological Chemistry and Engineering S

The Journal of Society of Ecological Chemistry and Engineering

4 Issues per year


IMPACT FACTOR 2016: 0.717
5-year IMPACT FACTOR: 0.842

CiteScore 2016: 0.74

SCImago Journal Rank (SJR) 2016: 0.231
Source Normalized Impact per Paper (SNIP) 2016: 0.628

Open Access
Online
ISSN
1898-6196
See all formats and pricing
More options …

Spatial and chemical patterns of PM2.5 - differences between a maritime and an inland country

Małgorzata Werner
  • Corresponding author
  • Department of Climatology and Atmosphere Protection, University of Wroclaw, ul. Kosiby 8, 51-621 Wroclaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maciej Kryza
  • Department of Climatology and Atmosphere Protection, University of Wroclaw, ul. Kosiby 8, 51-621 Wroclaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anthony J. Dore
Published Online: 2016-04-09 | DOI: https://doi.org/10.1515/eces-2016-0004

Abstract

The Fine Resolution Atmospheric Multi-pollutant Exchange model was used to calculate the mean annual concentration of PM2.5 at a resolution of 5 km × 5 km for the United Kingdom (UK) and Poland for the year 2007. The modelled average PM2.5 concentration is higher for Poland than the UK and amounts to 9.2 µg · m−3 and 5.6 µg · m−3, respectively. The highest concentrations concern London and coastal areas (due to the sea salt contribution) for the UK and urban agglomerations in the case of Poland. Maximum values occurring close to the UK coastline can reach 18 µg · m−3. The average contribution of natural particles amounts to 34 and 20% of total PM2.5 concentration, respectively for the UK and Poland. Among anthropogenic particles for both countries the highest contribution falls on secondary inorganic aerosols and the lowest contribution is for secondary organic aerosols.

Keywords: PM2.5; concentrations; FRAME; United Kingdom; Poland

References

  • [1] Aldabe J, Elustondo D, Santamaría C, Lasheras E, Pandolfi M, Alastuey A, et al. Chemical characterisation and source apportionment of PM2.5 and PM10 at rural, urban and traffic sites in Navarra (North of Spain). Atmos Res. 2011;102(1-2):191-205. DOI: 10.1016/j.atmosres.2011.07.003.Web of ScienceCrossrefGoogle Scholar

  • [2] Hueglin C, Gehrig R, Baltensperger U, Gysel M, Monn C, Vonmont H. Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland. Atmos Environ. 2005;39:637-651. DOI: 10.1016/j.atmosenv.2004.10.027.CrossrefGoogle Scholar

  • [3] Kampa M, Castanas E. Human health effects of air pollution. Environ Pollut. 2008;151(2):362-367. DOI: 10.1016/j.envpol.2007.06.012.CrossrefGoogle Scholar

  • [4] Perez L, Tobias A, Querol X, Künzli N, Pey J, Alastuey A, et al. Coarse particles from Saharan dust and daily mortality. Epidemiology. 2008;19(6):800-807. DOI: 10.1097/EDE.0b013e31818131cf.CrossrefWeb of ScienceGoogle Scholar

  • [5] Viana M, Querol X, Alastuey A, Alastuey A, Ballester F, Llop S, et al. Characterising exposure to PM aerosols for an epidemiological study. Atmos Environ. 2008;42(7):1552-1568. DOI: 10.1016/j.atmosenv.2007.10.087.Web of ScienceCrossrefGoogle Scholar

  • [6] Bravo MA, Bell ML. Spatial heterogeneity of PM10 and O3 in São Paulo, Brazil, and implications for human health studies. J Air Waste Manag Assoc. 2011;61(1):69-77. DOI: 10.3155/1047-3289.61.1.69.CrossrefGoogle Scholar

  • [7] Menon S, Unger N, Koch D, Francis J, Garrett T, Sednev I, et al. Aerosol climate effects and air quality impacts from 1980 to 2030. Environ Res Lett. 2008;3(2):024004. DOI: 10.1088/1748-9326/3/2/024004.Google Scholar

  • [8] Bytnerowicz A, Omasa K, Paoletti E. Integrated effects of air pollution and climate change on forests: a northern hemisphere perspective. Environ Pollut. 2007;147(3):438-445. DOI: 10.1016/j.envpol.2006.08.028.CrossrefWeb of ScienceGoogle Scholar

  • [9] Brunekreef B, Holgate ST. Air pollution and health. Lancet. 2002;360(9341):1233-1242. DOI: 10.1016/S0140-6736(02)11274-8.CrossrefGoogle Scholar

  • [10] Basart S, Pay MT, Jorba O, Pérez C, Jiménez-Guerrero P, Schulz M, et al. Aerosols in the CALIOPE air quality modelling system: evaluation and analysis of PM levels, optical depths and chemical composition over Europe. Atmos Chem Phys. 2012;12(7):3363-3392. DOI: 10.5194/acp-12-3363-2012.CrossrefWeb of ScienceGoogle Scholar

  • [11] Nelson PF. Trace metal emissions in fine particles from coal combustion. Energy Fuels. 2007;21(2):477-484. DOI: 10.1021/ef060405q.CrossrefGoogle Scholar

  • [12] Juda-Rezler K, Reizer M, Oudinet J-P. Determination and analysis of PM10 source apportionment during episodes of air pollution in Central Eastern European urban areas: The case of wintertime 2006. Atmos Environ. 2011;45(36):6557-6566. DOI: 10.1016/j.atmosenv.2011.08.020.Web of ScienceCrossrefGoogle Scholar

  • [13] Mathur R, Yu S, Kang D, Schere KL. Assessment of the wintertime performance of developmental particulate matter forecasts with the Eta-Community Multiscale Air Quality modeling system. J Geophys Res D Atmos. 2008;113. DOI: 10.1029/2007JD008580.CrossrefWeb of ScienceGoogle Scholar

  • [14] Turnbull AB, Harrison RM. Major component contributions to PM10 composition in the UK atmosphere. Atmos Environ. 2000;34(19):3129-3137. DOI: 10.1016/S1352-2310(99)00441-0.CrossrefGoogle Scholar

  • [15] Harrison RM, Yin J. Chemical speciation of PM2.5 particles at urban background and rural sites in the UK atmosphere. J Environ Monit. 2010;12(7):1404-1414. DOI: 10.1039/c000329h.CrossrefWeb of ScienceGoogle Scholar

  • [16] Renner E, Wolke R. Modelling the formation and atmospheric transport of secondary inorganic aerosols with special attention to regions with high ammonia emissions. Atmos Environ. 2010;44(15):1904-1912. DOI: 10.1016/j.atmosenv.2010.02.018.CrossrefWeb of ScienceGoogle Scholar

  • [17] European Comission. Commission Staff Working Paper Establishing Guidelines for Demonstration and Subtraction of Exceedances Attributable to Natural Sources under the Directive 2008/50/EC on Ambient Air Quality and Cleaner Air for Europe SEC(2011) 208 Final. Brussels 15.02.201; 2011. http://ec.europa.eu/environment/air/quality/legislation/pdf/sec_2011_0208.pdf.

  • [18] Fournier N, Dore AJ, Vieno M, Weston KJ, Dragosits U, Sutton MA. Modelling the deposition of atmospheric oxidised nitrogen and sulphur to the United Kingdom using a multi-layer long-range transport model. Atmos Environ. 2004;38(5):683-694. DOI: 10.1016/j.atmosenv.2003.10.028.CrossrefGoogle Scholar

  • [19] Kryza M, Werner M, Błaś M, Dore AJ, Sobik M. The effect of emission from coal combustion in nonindustrial sources on deposition of sulfur and oxidized nitrogen in Poland. J Air Waste Manag Assoc. 2010;60(7):856-866. DOI: 10.3155/1047-3289.60.7.856.CrossrefGoogle Scholar

  • [20] Stedman JR, Kent AJ, Grice S, Bush TJ, Derwent RG. A consistent method for modelling PM10 and PM2.5 concentrations across the United Kingdom in 2004 for air quality assessment. Atmos Environ. 2007;41(1):161-172. DOI: 10.1016/j.atmosenv.2006.07.048.CrossrefGoogle Scholar

  • [21] Simpson D, Benedictow A, Berge H, Bergström R, Emberson LD, Fagerli H, et al. The EMEP MSC-W chemical transport model - technical description. Atmos Chem Phys. 2012;12(16):7825-7865. DOI: 10.5194/acp-12-7825-2012.Web of ScienceCrossrefGoogle Scholar

  • [22] Bergström R, Denier van der Gon HAC, Prévôt ASH, Yttri KE, Simpson D. Modelling of organic aerosols over Europe (2002-2007) using a volatility basis set (VBS) framework: application of different assumptions regarding the formation of secondary organic aerosol. Atmos Chem Phys. 2012;12(18):8499-8527. DOI: 10.5194/acp-12-8499-2012.CrossrefWeb of ScienceGoogle Scholar

  • [23] Dragosits U, Sutton MA, Place CJ, Bayley AA. Modelling the spatial distribution of agricultural ammonia emissions in the UK. Environ Pollut. 1998;102(1):195-203. DOI: 10.1016/S0269-7491(98)80033-X.CrossrefWeb of ScienceGoogle Scholar

  • [24] Dębski B, Olendrzyński K, Cieślińska J, Kargulewicz I, Skośkiewicz J, Olecka A, Kania K. Inwentaryzacja emisji do powietrza SO2, NO2, CO, NH3, pyłów, metali ciężkich NMLZO i TZO w Polsce za rok 2007 (Inventarisation of emission to the air of SO2, NO2, CO, NH4, particulate matters, heavy metals, NMLZO and TZO in Poland for the year 2007). Warszawa: Instytut Ochrony Środowiska, Krajowe Centrum Inwentaryzacji Emisji. 2009.Google Scholar

  • [25] Korcz M, Fudała J, Kliś C. Estimation of wind blown dust emissions in Europe and its vicinity. Atmos Environ. 2009;43(7):1410-1420. DOI: 10.1016/j.atmosenv.2008.05.027.CrossrefGoogle Scholar

  • [26] Tsyro SG. To what extent can aerosol water explain the discrepancy between model calculated and gravimetric PM10 and PM 2.5? Atmos Chem Phys. 2005;5:515-532. DOI: 10.5194/acp-5-515-2005.CrossrefGoogle Scholar

  • [27] Werner M, Kryza M, Dore AJ. Differences in the spatial distribution and chemical composition of PM10 between the UK and Poland. Environ Model Assess. 2014;19(3):179-192. DOI: 10.1007/s10666-013-9384-0.Web of ScienceCrossrefGoogle Scholar

About the article

Published Online: 2016-04-09

Published in Print: 2016-03-01


Citation Information: Ecological Chemistry and Engineering S, Volume 23, Issue 1, Pages 61–69, ISSN (Online) 1898-6196, DOI: https://doi.org/10.1515/eces-2016-0004.

Export Citation

© 2016 Małgorzata Werner et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Joanna Jędruszkiewicz, Bartosz Czernecki, and Michał Marosz
International Journal of Environmental Health Research, 2017, Page 1

Comments (0)

Please log in or register to comment.
Log in