Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Ecological Chemistry and Engineering S

The Journal of Society of Ecological Chemistry and Engineering

4 Issues per year


IMPACT FACTOR 2016: 0.717
5-year IMPACT FACTOR: 0.842

CiteScore 2016: 0.74

SCImago Journal Rank (SJR) 2016: 0.231
Source Normalized Impact per Paper (SNIP) 2016: 0.628

Open Access
Online
ISSN
1898-6196
See all formats and pricing
More options …

Modelling of Mercury Emissions from Large Solid Fuel Combustion and Biomonitoring in CZ-PL Border Region

Jan Kříž
  • Corresponding author
  • Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 50003 Hradec Králové, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jan Loskot
  • Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 50003 Hradec Králové, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vladimír Štěpánek
  • Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 50003 Hradec Králové, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lidmila Hyšplerová
  • Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 50003 Hradec Králové, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Daniel Jezbera
  • Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 50003 Hradec Králové, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lucie Trnková / Agnieszka Dołhańczuk-Śródka
  • Independent Chair of Biotechnology and Molecular Biology, Faculty of Natural Sciences and Technology, University of Opole, ul. kard. B. Kominka 6, 45-035 Opole, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zbigniew Ziembik
  • Independent Chair of Biotechnology and Molecular Biology, Faculty of Natural Sciences and Technology, University of Opole, ul. kard. B. Kominka 6, 45-035 Opole, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Małgorzata Rajfur
  • Independent Chair of Biotechnology and Molecular Biology, Faculty of Natural Sciences and Technology, University of Opole, ul. kard. B. Kominka 6, 45-035 Opole, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrzej Kłos
  • Independent Chair of Biotechnology and Molecular Biology, Faculty of Natural Sciences and Technology, University of Opole, ul. kard. B. Kominka 6, 45-035 Opole, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maria Wacławek
  • Independent Chair of Biotechnology and Molecular Biology, Faculty of Natural Sciences and Technology, University of Opole, ul. kard. B. Kominka 6, 45-035 Opole, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-12-30 | DOI: https://doi.org/10.1515/eces-2016-0042

Abstract

Tightening of norms for air protection leads to a development of new and significantly more effective techniques for removing particulate matter, SOx and NOx from flue gas which originates from large solid fuel combustion. Recently, it has been found that combinations of these environmental technologies can also lead to the reduction of mercury emissions from coal power plants. Now the greatest attention is paid especially to the coal power plant in Opatovice nad Labem, close to Hradec Kralove. Its system for flue gas dedusting was replaced by a modern type of cloth fabric filter with the highest particle separation efficiency which belongs to the category of BAT. Using this technology, together with modernization of the desulphurisation device and increasing of nitrogen oxides removal efficiency, leads also to a reduction of mercury emissions from this power plant. The University of Hradec Kralove, the Opole University and EMPLA Hradec Kralove successfully cooperate in the field of toxic metals biomonitoring almost 20 years. In the Czech-Polish border region, comprehensive biomonitoring of mercury in bioindicators Xerocomus badius in 9 long-term monitored reference points is done. The values of mercury concentration measured in 2012 and 2016 were compared with values computed by a dispersion model SYMOS′97 (updated 2014). Thanks to modern methods of dedusting and desulphurisation, emissions of mercury from this large coal power plant are now smaller than before and that the downward trends continues. The results indicate that Xerocomus badius is a suitable bioindicator for a long-term monitoring of changes in mercury imissions in this forested border region. This finding is significant because it shows that this region is suitable for leisure, recreation, and rehabilitation.

Keywords: BAT flue gas dedusting; modelling of imissions; mercury biomonitoring

References

  • [1] Directive 2010/75/EU of the European Parliament and of the Council on industrial emissions (integrated pollution prevention and control). Offic J European Union. 2010;53(L 334):17-119. DOI: 10.3000/17252555.L_2010.334.eng.CrossrefGoogle Scholar

  • [2] Pacyna EG, Pacyna JM, Steenhuisen F, Wilson S. Global anthropogenic mercury emission inventory for 2000. Atmos Environ. 2006;40:4048-4063. DOI: 10.1016/j.atmosenv.2006.03.041.CrossrefGoogle Scholar

  • [3] Zeng H, Jin F, Guo J. Removal of elemental mercury from coal combustion flue gas by chloride-impregnated activated carbon. Fuel. 2004;83(1):143-146. DOI: 10.1016/S0016-2361(03)00235-7.CrossrefGoogle Scholar

  • [4] Kasey P. EPA Air Toxics Rule will close some W.Va. Power Plants by 2015. The State J. 2011. http://www.statejournal.com/story/16321771/epa-air-toxics-rule-will-close-some-wva-powerplants.

  • [5] Pudasainee D, Kim J-H, Seo Y-C. Mercury emission trend influenced by stringent air pollutants regulation for coal-fired power plants in Korea. Atmos Environ. 2009;44(39):6254-6259. DOI: 10.1016/j.atmosenv.2009.06.007.CrossrefWeb of ScienceGoogle Scholar

  • [6] Boening DW. Ecological effects, transport, and fate of mercury: a general review. Chemosphere. 2000;40:1335-1351. DOI: 10.1016/S0045-6535(99)00283-0.CrossrefGoogle Scholar

  • [7] Cartridge filters. Donaldson Company, Inc. http://www2.donaldson.com/toritdce/en-gb/replacement-parts-services/pages/filters-donaldson-units/cartridge-filters.aspx.

  • [8] OMD41 Operating Instructions. Germany: SICK MAIHAK GmbH; 2007 (documentation material of SICK MAIHAK GmbH). https://www.yumpu.com/en/document/view/10531842/omd41-operating-instructions-sick.

  • [9] Engel-Cox J, Oanh NTK, van Donkelaar A, Martin RV, Zell E. Toward the next generation of air quality monitoring: Particulate matter. Atmos Environ. 2013; 80:584-590. DOI: 10.1016/j.atmosenv.2013.08.016.Web of ScienceCrossrefGoogle Scholar

  • [10] Dołhańczuk-Śródka A, Ziembik Z, Kříž J, Hyšplerová L, Wacławek M. Pb-210 isotope as a pollutant emission indicator. Ecol Chem Eng S. 2015;22(1):49-59. DOI: 10.1515/eces-2015-0004.Google Scholar

  • [11] Bubnik J, Keder J, Macoun J, Maňák J. SYMOS’97. System for modeling of stationary sources - methodological guide). Prague: Czech Hydrometeorological Institute; 1998 (updated 2014). https://www.google.cz/search?q=Vach+Air+protection&ie=utf-8&oe=utf-8&clien.

  • [12] Borrego C, Incecik S. Air Pollution Modeling and Its Application. XVI. New York: Springer; 2004. http://www.worldcat.org/title/air-pollution-modeling-and-its-application-xvi/oclc/840276673.

  • [13] Szopka K, Karczewska A, Kabała C. Mercury accumulation in the surface layers of mountain soils: A case study from the Karkonosze Mountains, Poland. Chemosphere. 2011;83:1507-1512. DOI: 10.1016/j.chemosphere.2011.01.049.Web of ScienceCrossrefGoogle Scholar

  • [14] Melgar MJ, Alonso J, García, MA. Mercury in edible mushrooms and underlying soil: bioconcentration factors and toxicological risk. Sci Total Environ. 2009;407:5328-5334. DOI: 10.1016/j.scitotenv.2009.07.001.Web of ScienceCrossrefGoogle Scholar

  • [15] Ernst G, Zimmermann S, Christie P, Frey B. Mercury, cadmium and lead concentrations in different ecophysiological groups of earthworms in forest soils. Environ Pollut. 2008;156(3):1304-1313. DOI: 10.1016/j.envpol.2008.03.002.CrossrefWeb of ScienceGoogle Scholar

  • [16] Dołhańczuk-Śródka A, Ziembik Z, Kříž J, Hyšplerová L, Wacławek M. Investigation of committed radiation dose rate and relationships between alkaline metals concentrations in mushroom Xerocomus badius. Ecol Chem Eng S. 2012;19(4):649-664. DOI: 10.2478/v10216-011-0047-2.CrossrefWeb of ScienceGoogle Scholar

  • [17] Rieder SR, Brunner I, Horvat M, Jacobs A, Frey B. Accumulation of mercury and methylmercury by mushrooms and earthworms from forest soils. Environ Pollut. 2011;159(10):2861-9. DOI: 10.1016/j.envpol.2011.04.040.CrossrefWeb of ScienceGoogle Scholar

  • [18] Svoboda L, Havlíčková B, Kalač P. Contents of cadmium, mercury and lead in edible mushrooms growing in a historical silver-mining area. Food Chem. 2006;96(4):580-585. DOI: 10.1016/j.foodchem.2005.03.012.CrossrefGoogle Scholar

  • [19] Falandysz J, Kojta AK, Jarzyńska G, Drewnowska M, Dryżałowska A, Wydmańska D, et al. Mercury in Bay Bolete (Xerocomus badius): bioconcentration by fungus and assessment of element intake by humans eating fruiting bodies. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2012;29(6):951-61. DOI: 10.1080/19440049.2012.662702.CrossrefGoogle Scholar

  • [20] Falandysz J, Zalewska T, Krasińska G, Apanel A, Yuanzhong W, Pankavec S. Evaluation of the radioactive contamination in fungi genus Boletus in the region of Europe and Yunnan Province in China. Appl Microbiol Biotechnol. 2015;99:8217-8224. DOI: 10.1007/s00253-015-6668-0.CrossrefWeb of ScienceGoogle Scholar

  • [21] Zalewska T, Cocchi L, Falandysz J. Radiocaesium in Cortinarius spp. mushrooms in the regions of the Reggio Emilia in Italy and Pomerania in Poland. Environ Sci Pollut Res Int. 2016;23(22):23169-23174. DOI:10.1007/s11356-016-7541-0.CrossrefWeb of ScienceGoogle Scholar

  • [22] Škrkal J, Rulík P, Fantínová K, Burianová J, Helebrant J. Long-term 137Cs activity monitoring of mushrooms in forest ecosystems of the Czech Republic. Radiat Prot Dosimetry. 2013:157(4):579-84. DOI: 10.1093/rpd/nct172.CrossrefWeb of ScienceGoogle Scholar

  • [23] Betti L, Palego L, Lucacchini A, Giannaccini G. 137Caesium in samples of wild-grown Boletus edulis Bull. from Lucca province (Tuscany, Italy) and other Italian and European geographical areas. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2016;5:1-7. DOI: 10.1080/19440049.2016.1256502.CrossrefGoogle Scholar

  • [24] Zarubina N. The influence of biotic and abiotic factors on (137)Cs accumulation in higher fungi after the accident at Chernobyl NPP. J Environ Radioact. 2016:161:66-72. DOI: 10.1016/j.jenvrad.2015.11.014.CrossrefWeb of ScienceGoogle Scholar

About the article

Published Online: 2016-12-30

Published in Print: 2016-12-01


Citation Information: Ecological Chemistry and Engineering S, ISSN (Online) 1898-6196, DOI: https://doi.org/10.1515/eces-2016-0042.

Export Citation

© 2016 Jan Kříž et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in