Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Ecological Chemistry and Engineering S

The Journal of Society of Ecological Chemistry and Engineering

4 Issues per year


IMPACT FACTOR 2016: 0.717
5-year IMPACT FACTOR: 0.842

CiteScore 2016: 0.74

SCImago Journal Rank (SJR) 2016: 0.231
Source Normalized Impact per Paper (SNIP) 2016: 0.628

Open Access
Online
ISSN
1898-6196
See all formats and pricing
More options …

The Origin of Heavy Metals and Radionuclides Accumulated in the Soil and Biota Samples Collected in Svalbard, Near Longyearbyen

Andrzej Kłos
  • Corresponding author
  • Chair of Biotechnology and Molecular Biology, University of Opole, ul. kard. B. Kominka 6, 45-032 Opole, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zbigniew Ziembik / Małgorzata Rajfur / Agnieszka Dołhańczuk-Śródka / Zbigniew Bochenek / Jarle W. Bjerke
  • Norwegian Institute for Nature Research - NINA, FRAM - High North Research Centre for Climate and the Environment, PO Box 6606 Langnes, NO-9296 Tromsø, Norway
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hans Tømmervik
  • Norwegian Institute for Nature Research - NINA, FRAM - High North Research Centre for Climate and the Environment, PO Box 6606 Langnes, NO-9296 Tromsø, Norway
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bogdan Zagajewski
  • Department of Geoinformatics, Cartography and Remote Sensing, Faculty of Geography and Regional Studies, University of Warsaw, ul. Krakowskie Przedmieście 30, 00-927 Warszawa, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dariusz Ziółkowski / Dominik Jerz
  • Chair of Biotechnology and Molecular Biology, University of Opole, ul. kard. B. Kominka 6, 45-032 Opole, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maria Zielińska
  • Chair of Biotechnology and Molecular Biology, University of Opole, ul. kard. B. Kominka 6, 45-032 Opole, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Paweł Krems
  • Chair of Biotechnology and Molecular Biology, University of Opole, ul. kard. B. Kominka 6, 45-032 Opole, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Piotr Godyń
  • Chair of Biotechnology and Molecular Biology, University of Opole, ul. kard. B. Kominka 6, 45-032 Opole, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-07-13 | DOI: https://doi.org/10.1515/eces-2017-0015

Abstract

Heavy metals and radioactive compounds are potentially hazardous substances for plants, animals and humans in the Arctic. A good knowledge of the spatial variation of these substances in soil and primary producers, and their sources, is therefore essential. In the samples of lichen Thamnolia vermicularis, Salix polaris and Cassiope tetragona, and the soil samples collected in 2014 in Svalbard near Longyearbyen, the concentrations of the following heavy metals were determined: Mn, Ni, Cu, Zn, Cd, Pb and Hg, as well as the activity concentrations of the following: K-40, Cs-137, Pb-210, Pb-212, Bi-212, Bi-214, Pb-214, Ac-228, Th-231 and U-235 in the soil samples. The differences in the concentrations of the analytes accumulated in the different plant species and soil were studied using statistical methods. Sea aerosol was indicated as the source of Pb, Hg, Cs-137, Pb-210 and Th-231 in the studied area. A relatively high concentration of nickel was determined in the biota samples collected near Longyearbyen, compared to other areas of Svalbard. It was supposed that nickel may be released into the atmosphere as a consequence of the local coal mining around Longyearbyen.

Keywords: heavy metals; radioisotopes; biomonitoring; soil; Arctic regions

References

  • [1] Paatero J, Vira J, Siitari-Kauppi M, Hatakka J, Holmén K, Viisanen Y. Airborne fission products in the high Arctic after the Fukushima nuclear accident. J Environ Radioactiv. 2012;114:41-47. DOI: 10.1016/j.jenvrad.2011.12.027.CrossrefGoogle Scholar

  • [2] Bokhorst S, Tømmervik H, Callaghan TV, Phoenix GK, Bjerke JW. Vegetation recovery following extreme winter warming events in the sub-Arctic estimated using NDVI from remote sensing and handheld passive proximal sensors. Environ Experimental Bot. 2012;81:18-25. DOI: 10.1016/j.envexpbot.2012.02.011.CrossrefGoogle Scholar

  • [3] Łokas E, Bartmiński P, Wachniew P, Mietelski JW, Kawiak T, Środoń J. Sources and pathways of artificial radionuclides to soils at a High Arctic site. Environ Sci Pollut Res. 2014;21:12479-12493. DOI: 10.1007/s11356-014-3163-6.CrossrefGoogle Scholar

  • [4] Singh SM, Sharma J, Gawas-Sakhalkar P, Upadhyay AK, Naik S, Pedneker SM, et al. Atmospheric deposition studies of heavy metals in Arctic by comparative analysis of lichens and cryoconite. Environ Monit Assess. 2013;185:1367-1376. DOI: 10.1007/s10661-012-2638-5.CrossrefGoogle Scholar

  • [5] Zhang P, Ge L, Gao H, Yao T, Fang X, Zhou Ch, et al. Distribution and transfer pattern of polychlorinated Biphenyls (PCBs) among the selected environmental media of Ny-Ålesund, the Arctic: As a case study. Marine Pollut Bullet. 2014;89:267-275. DOI: 10.1016/j.marpolbul.2014.09.050.CrossrefGoogle Scholar

  • [6] Samecka-Cymerman A, Wojtuń B, Kolon K, Kempers AJ. Sanionia uncinata (Hedw.) loeske as bioindicator of metal pollution in polar regions. Polar Biol. 2011;34:381-388. DOI: 10.1007/s00300-010-0893-x.CrossrefGoogle Scholar

  • [7] Wojtuń, B, Samecka-Cymerman A, Kolon, K, Kempers AJ, Skrzypek G. Metals in some dominant vascular plants, mosses, lichens, algae, and the biological soil crust in various types of terrestrial tundra, SW Spitsbergen, Norway. Polar Biol. 2013;36:1799-1809. DOI: 10.1007/s00300-013-1399-0.CrossrefGoogle Scholar

  • [8] Dietz R, Riget F, Hobson KA, Heide-Jørgensen MP, Møller P, Cleemann M, et al. Regional and inter annual patterns of heavy metals, organochlorines and stable isotopes in narwhals (Monodon monoceros) from West Greenland. Sci Total Environ. 2004;331:83-105. DOI: 10.1016/j.scitotenv.2004.03.041.CrossrefGoogle Scholar

  • [9] Sagerup K, Savinov V, Savinova T, Kuklin V, Muir DCG, Gabrielsen GW. Persistent organic pollutants, heavy metals and parasites in the glaucous gull (Larus hyperboreus) on Spitsbergen. Environ Pollut. 2009;157:2282-2290. DOI: 10.1016/j.envpol.2009.03.031.CrossrefGoogle Scholar

  • [10] Simões JC, Zagorodnov VS. The record of anthropogenic pollution in snow and ice in Svalbard, Norway. Atmospheric Environ. 2001;35:403-413. DOI: 10.1016/S1352-2310(00)00122-9.CrossrefGoogle Scholar

  • [11] Drevnick PE, Yang H, Lamborg CH, Rose NL. Net atmospheric mercury deposition to Svalbard: Estimates from lacustrine sediments. Atmospheric Environ. 2012;59:509-513. DOI: 10.1016/j.atmosenv.2012.05.048.CrossrefGoogle Scholar

  • [12] Zaborska A, Mietelski JW, Carroll JL, Papucci C, Pempkowiak J. Sources and distributions of 137Cs, 238Pu, 239,240Pu radionuclides in the north-western Barents Sea. J Environ Radioactiv. 2010;101:323-331. DOI: 10.1016/j.jenvrad.2010.01.006.CrossrefGoogle Scholar

  • [13] Kozak K, Polkowska Ż, Ruman M, Kozioł K, Namieśnik J. Analytical studies on the environmental state of the Svalbard Archipelago provide a critical source of information about anthropogenic global impact. Trends Analyt Chem. 2013;50:107-126. DOI: 10.1016/j.trac.2013.04.016.CrossrefGoogle Scholar

  • [14] AMAP Assessment 2006: Acidifying Pollutants, Arctic Haze, and Acidification in the Arctic. Oslo: 2006. https://www.amap.no/documents/download/1162.Google Scholar

  • [15] AMAP Assessment 2002: Radioactivity in the Arctic. Oslo: 2004. https://www.amap.no/documents/download/1160.Google Scholar

  • [16] AMAP Assessment 2002: Heavy Metals in the Arctic. Oslo: 2005. https://www.amap.no/documents/download/1161.Google Scholar

  • [17] Aas W, Platt S, Solberg S, Yttri KE. Monitoring of long-range transported air pollutants in Norway. Annual Report 2014. Miljødirektoratet rapport, M-367/2015 (20/2015). Kjelle: NILU Norsk institutt for luftforsknin; 2015. https://brage.bibsys.no/xmlui/bitstream/handle/11250/2383289/20-2015-WAA_MD_LRTAP.pdf?sequence=3&isAllowed=y.Google Scholar

  • [18] Gabrielsen GW, Evenset A, Frantzen S, Gwynn J, Hallanger IG., Kallenborn R, et al. MOSJ statusrapport 2011 Miljøgifter. Norsk Polarinstitutt Rapportserie 137. Tromsø: Norwegian Polar Institute; 2011. https://brage.bibsys.no/xmlui/bitstream/handle/11250/173389/Brage1.pdf?sequence=3.Google Scholar

  • [19] Holm EB, Brandvik PJ, Steinnes E. Pollution in acid mine drainage from mine tailings in Svalbard, Norwegian Arctic. J Physique. 2003;IV(107):625-628. DOI: 10.1051/jp4:20030381.CrossrefGoogle Scholar

  • [20] Elberling B, Søndergaard J, Jensen LA, Schmidt LB, Hansen BU, Asmund G, et al. Arctic vegetation damage by winter-generated coal mining pollution released upon thawing. Environ Sci Technol. 2007;41(7):2407-2413. DOI: 10.1021/es061457x.CrossrefGoogle Scholar

  • [21] Askaer L, Schmidt LB, Elberling B, Asmund G., Jónsdóttir IS. Environmental impact on an Arctic soil-plant system resulting from metals released from coal mine waste in Svalbard (78° N). Water, Air, Soil Pollut. 2008;195:99-114. DOI: 10.1007/s11270-008-9730-z.CrossrefGoogle Scholar

  • [22] Headley AD. Heavy metals in peat from the high Arctic. Sci Total Environ. 1996;177:105-111. DOI: 10.1016/0048-9697(95)04867-7.CrossrefGoogle Scholar

  • [23] Johansen BF, Prestvold K, Overrein Ø. The Cruise Handbook for Svalbard. Tromsø: Norwegian Polar Institute; 2011. http://cruise-handbook.npolar.no/en/nordvesthjornet/bruceneset.html.Google Scholar

  • [24] Kłos A, Bochenek Z, Bjerke JW, Zagajewski B, Ziółkowski D, Ziembik Z, et al. The use of mosses in biomonitoring of the selected areas in Poland and Spitsbergen in the years from 1975 to 2014. Ecol Chm Eng S. 2015;22(2):201-218. DOI: 10.1515/eces-2015-0011.Google Scholar

  • [25] Aitchison J. The Statistical Analysis of Compositional Data. Caldwell. New Yersey: The Blackburn Press; 2003.Google Scholar

  • [26] Aitchison J. A Concise Guide to Compositional Data Analysis. 2010. http://www.leg.ufpr.br/lib/exe/fetch.php/pessoais:abtmartins:a_concise_guide_to_compositional_data_analysis.pdf. Accessed March 20th 2016.Google Scholar

  • [27] Pawlowsky-Glahn V, Buccianti A, editors. Compositional Data Analysis. Theory and Applications. Chichester, UK: John Wiley & Sons, Ltd.; 2011.Google Scholar

  • [28] Filzmoser P, Hron K. Correlation analysis for compositional data. Mathemat Geoscien. 2008;41(8):905-919. DOI: 10.1007/s11004-008-9196-y.CrossrefGoogle Scholar

  • [29] Ziembik Z, Dołhańczuk-Śródka A. Application of compositional data analysis in biomonitoring of atmospheric dust precipitation. In: Proceedings of the 6th International Workshop on Compositional Data Analysis: Girona, 1-5 de juny de 2015. Girona: Universitat de Girona. http://dugi-doc.udg.edu/bitstream/handle/10256/10558/Proceedings-Book-LIGHT.pdf?sequence=1. Accessed January 20th, 2016.Google Scholar

  • [30] R Development Core Team. 2015. R: A language and environment for statistical computing. R foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. Accessed March 1st, 2016.Google Scholar

  • [31] Kaufman L, Rousseeuw PJ. Finding Groups in Data. An Introduction to Cluster Analysis. New York: Wiley; 2005.Google Scholar

  • [32] Maechler M, Rousseeuw PA, Struyf MH, Hornik K. Cluster: Cluster Analysis Basics and Extensions. R package version 1.15.3”.; 2014. https://cran.r-project.org/web/packages/cluster/index.html.Google Scholar

  • [33] van den Boogaart KG, Tolosana R, Bren M. Compositions: Compositional Data Analysis. R package version 1.40-1. http://CRAN.R-project.org/package=compositions. Accessed March 10th, 2016.Google Scholar

  • [34] van den Boogaart KG, Tolosana-Delgado R. Analyzing Compositional Data with R. Heidelberg, New York, Dodrecht, London: Springer; 2013.Google Scholar

  • [35] Grodzińska K, Godzik B. Heavy metals and sulphur in mosses from Southern Spitsbergen. Polar Res. 1991;9:133-140. DOI: 10.1111/j.1751-8369.1991.tb00609.x.CrossrefGoogle Scholar

  • [36] Jóźwik Z. Heavy metals in tundra plants of Bellsund area, Spitsbergen. Polish Polar Res. 1990;11:401-409. http://polish.polar.pan.pl/ppr11/1990-3-4_401-409.pdf.Google Scholar

  • [37] Jóźwik Z. Heavy metals in tundra plants of the Bellsund in West Spitsbergen, investigated in the years 1987-1995. Polish Polar Res. 2000;21:43-54. http://www.polish.polar.pan.pl/ppr21/2000-1_043-054.pdf.Google Scholar

  • [38] Drbal K, Elster J, Komarek J. Heavy metals in water, ice and biological material from Spitsbergen, Svalbard. Polar Res. 1992;11:99-101. DOI: 10.1111/j.1751-8369.1992.tb00416.x.CrossrefGoogle Scholar

  • [39] Gulińska J, Rachlewicz G, Szczuciński W, Barałkiewicz D, Kózka M, Bulska E, et al. Soil contamination in high Arctic areas of human impact, central Spitsbergen, Svalbard. Polish J Environ Stud. 2003;12:701-707. http://www.pjoes.com/pdf/12.6/701-707.pdf.Google Scholar

  • [40] Choy ES, Gauthier M, Mallory ML, Smol JP, Douglas MSV, Lean D, et al. An isotopic investigation of mercury accumulation in terrestrial food webs adjacent to an Arctic seabird colony. Sci Total Environ. 2010;8:1858-1867. DOI: 10.1016/j.scitotenv.2010.01.014.CrossrefGoogle Scholar

  • [41] Tømmervik H, Høgda KA, Solheim I. Monitoring vegetation changes in Pasvik (Norway) and Pechenga in Kola Peninsula (Russia) using multitemporal Landsat MSS/TM data. Remote Sens Environ. 2003;85:370-388. DOI: 10.1016/S0034-4257(03)00014-2.CrossrefGoogle Scholar

  • [42] Bjerke JW, Tømmervik H, Finne TE, Jensen H, Lukina N, Bakkestuen V. Epiphytic lichen distribution and plant leaf heavy metal concentrations in Russian-Norwegian boreal forests influenced by air pollution from nickel-copper smelters. Boreal Environ Res. 2006;11:441-450. http://www.borenv.net/BER/pdfs/ber11/ber11-441.pdf.Google Scholar

  • [43] Äyräs M, Niskavaara H, Bogatyrev I, Chekushin V, Pavlov V, de Caritat P, et al. Regional patterns of heavy metals (Co, Cr, Cu, Fe, Ni, Pb, V and Zn) and sulphur in terrestrial moss samples as indication of airborne pollution in a 188,000 km2 area in northern Finland, Norway and Russia. J Geochem Explorat. 1997;58:269-281. DOI: 10.1016/S0375-6742(96)00077-5.CrossrefGoogle Scholar

  • [44] Pollock TM, Tin S. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure, and properties. J Propulsion Power. 2006;22(2):361-374. DOI: 10.2514/1.18239.CrossrefGoogle Scholar

  • [45] Sharpe HJ. Effect of microstructure on high-temperature mechanical behavior of nickel-base superalloys for turbine disc applications. Dissertation. Atlanta, USA: Georgia Institute of Technology; 2007. DOI: 10.4028/www.scientific.net/AMR.278.259.CrossrefGoogle Scholar

  • [46] Kim KH, Shon ZH, Mauulida PT, Song SK. Long-term monitoring of airborne nickel (Ni) pollution in association with some potential source processes in the urban environment. Chemosphere. 2014;111:312-319. DOI: 10.1016/j.chemosphere.2014.03.138.CrossrefGoogle Scholar

  • [47] Dowdall M, Gerland S, Lind B. Gamma-emitting natural and anthropogenic radionuclides in the terrestrial environment of Kongsfjord, Svalbard. Sci Total Environ. 2003;305:229-240. DOI: 10.1016/S0048-9697(02)00478-3.CrossrefGoogle Scholar

  • [48] Dowdall M, Gwynn JP, Moran C, Davids C, O'Dea J, Lind B. Organic soil as a radionuclide sink in a High Arctic environment. J Radioanal Nuclear Chem. 2005;266(2):217 - 223. DOI: 10.1007/s10967-005-0895-2.CrossrefGoogle Scholar

  • [49] Dowdall M, Vicat K, Frearson I, Gerland S, Lind B, Shaw G. Assessment of the radiological impacts of historical coal mining operations on the environment of Ny-Ålesund, Svalbard. J Environ Radioactiv. 2004;71:101-114. DOI: 10.1016/S0265-931X(03)00144-9.CrossrefGoogle Scholar

  • [50] Gwynn JP, Dowdall M, Davids C, Selnæs ØG, Lind B. The radiological environment of Svalbard. Polar Res. 2004;23:167-180. DOI: 10.1111/j.1751-8369.2004.tb00006.x.CrossrefGoogle Scholar

  • [51] Kłos A, Rajfur M, Wacławek M, Wacławek W. 137Cs transfer from local particulate matter to lichens and mosses. Nukleonika. 2009;54(4):297-303. http://www.nukleonika.pl/www/back/full/vol54_2009/v54n4p297f.pdf.Google Scholar

  • [52] Gwynn JP, Brown JE, Kovacs KM, Lydersen C. The derivation of radionuclide transfer parameters for and dose-rates to an adult ringed seal (Phoca hispida) in an Arctic environment. J Environ Radioactiv. 2006;90:197-209. DOI: 10.1016/j.jenvrad.2006.07.002.CrossrefGoogle Scholar

  • [53] United Nations. 2008. UNSCEAR 2008 Report Vol. I. Sources of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2008 Report to the General Assembly, with scientific annexes. Annex B. http://www.unscear.org/docs/reports/2008/11-80076_Report_2008_Annex_D.pdf. Accessed March 20th, 2016.Google Scholar

  • [54] United Nations. 2011. Sources and effects of ionizing radiation. UNSCEAR 2008. VOLUME II. Scientific Annexes C, D and E. http://www.unscear.org/docs/reports/2008/11-80076_Report_2008_Annex_D.pdf. Accessed March 15th, 2016.Google Scholar

  • [55] Aleksakhin RM, Sanzharova NI, Fesenko SV. Radioecology and the accident at the Chernobyl nuclear power plant. Atomic Energy. 2006;100(4):257-63. DOI: 10.1007/s10512-006-0080-x.CrossrefGoogle Scholar

  • [56] Wróbel Ł, Dołhańczuk-Śródka A, Kłos A, Ziembik Z. The activity concentration of post-Chernobyl Cs-137 in the area of the Opole Anomaly (southern Poland). Environ Monit Assess. 2015;187(1):4084. DOI: 10.1007/s10661-014-4084-z.CrossrefGoogle Scholar

  • [57] Dołhańczuk-Śródka A, Ziembik Z, Wacławek M, Hyšplerová L. Transfer of cesium-137 from forest soil to moss Pleurozium schreberi. Ecol Chem Eng S. 2011;18(4):509-16. http://tchie.uni.opole.pl/freeECE/S_18_4/DolhanczukSrodkaZiembik_18(S4).pdf.Google Scholar

  • [58] Ziembik Z, Dołhańczuk-Śródka A, Majcherczyk T, Wacławek M. Illustration of constrained composition statistical methods in the interpretation of radionuclide concentrations in the moss Pleurozium schreberi. J Environ Radioactiv. 2013;117:13-18. DOI: 10.1016/j.jenvrad.2012.04.002.CrossrefGoogle Scholar

  • [59] Steinnes E, Frontasyeva MV. Marine gradients of halogens in soil studied by epithermal neutron activation analysis. J Radioanal Nuclear Chem. 2002;253(1):173-177. DOI: 10.1023/A:1015849525392.CrossrefGoogle Scholar

  • [60] Frontasyeva MV, Steinnes E. Marine gradients of halogens in moss studies by epithermal neutron activation analysis. J Radioanal Nuclear Chem. 2004;261(1):101-106. DOI: 10.1023/B:JRNC.0000030941.78117.77.CrossrefGoogle Scholar

About the article

Published Online: 2017-07-13

Published in Print: 2017-06-27


Citation Information: Ecological Chemistry and Engineering S, ISSN (Online) 1898-6196, DOI: https://doi.org/10.1515/eces-2017-0015.

Export Citation

© by Andrzej Kłos. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in