Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Ecological Chemistry and Engineering S

The Journal of Society of Ecological Chemistry and Engineering

4 Issues per year

IMPACT FACTOR 2016: 0.717
5-year IMPACT FACTOR: 0.842

CiteScore 2016: 0.74

SCImago Journal Rank (SJR) 2016: 0.231
Source Normalized Impact per Paper (SNIP) 2016: 0.628

Open Access
See all formats and pricing
More options …

The effect of tropospheric ozone on flavonoids and pigments content in common buckwheat cotyledons

Henryk Dębski
  • Siedlce University of Natural Sciences and Humanities, Faculty of Natural Sciences, ul. B. Prusa 12, 08-110 Siedlce, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wiesław Wiczkowski
  • Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Department of Chemistry and Biodynamics of Food, ul. J. Tuwima 10, 10-748 Olsztyn, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dorota Szawara-Nowak
  • Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Department of Chemistry and Biodynamics of Food, ul. J. Tuwima 10, 10-748 Olsztyn, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Natalia Bączek
  • Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Department of Chemistry and Biodynamics of Food, ul. J. Tuwima 10, 10-748 Olsztyn, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Małgorzata Piechota
  • Siedlce University of Natural Sciences and Humanities, Faculty of Natural Sciences, ul. B. Prusa 12, 08-110 Siedlce, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marcin Horbowicz
  • Corresponding author
  • Siedlce University of Natural Sciences and Humanities, Faculty of Natural Sciences, ul. B. Prusa 12, 08-110 Siedlce, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-10-11 | DOI: https://doi.org/10.1515/eces-2017-0031


Tropospheric ozone forms in photochemical reactions or by refuse burning and combustion of exhaust gases from engines, and during some industrial processes. The mean ambient ozone concentration doubled during the last century, and in many urban areas has reached the phytotoxic level. In the present study, there was determined the effect of ozone fumigation on levels of individual flavonoids, chlorophylls, carotenoids and total phenols in the cotyledons of four common buckwheat cultivars (Hruszowska, Panda, Kora and Red Corolla). Six-day-old buckwheat seedlings were grown in controlled conditions and treated with an elevated dose of ozone (391 μg · m−3) during 5 days for 1 h each day. After the experiment, the cotyledons of the seedlings were analysed for individual flavonoids, chlorophylls, carotenoids and total phenols. Shoot elongation was also measured. Individual types of flavonoids in buckwheat cotyledons were found to respond to an elevated ozone dose in various ways. The response was also dependent on the cultivar evaluated. In the cotyledons of ozonized buckwheat seedlings, contents of C-glucosides of luteolin and apigenin decreased or did not change depending on the cultivar examined. In the case of flavonols, the contents of quercetin-3-O-rhamnosyl-galactoside and rutin (quercetin-3-O-rhamnosyl-glucoside) were markedly reduced in most cultivars. O3 had no effect on the level of anthocyanins and chlorophylls but it decreased carotenoids, and tended to inhibit buckwheat growth. In conclusion, a thesis can be formulated that, due to high reduction in important flavonoids, an elevated level of ambient ozone decreases the nutritional value of common buckwheat seedlings.

Keywords: common buckwheat; seedling; ozone; flavone; flavonol; chlorophyll; carotenoid


  • [1] Krupa SV, Gruenhage L, Jaeger H-J, Nosal M, Manning WJ, Legge AH, et al. Ambient ozone (O3) and adverse crop response: A unified view of cause and effect. Environ Pollut. 1995;87:19-126. DOI: 10.1016/S0269-7491(99)80014-1.CrossrefGoogle Scholar

  • [2] Bytnerowicz A, Manning WJ, Grosjean D, Chmielewski W, Dmuchowski W, Grodzinska K, et al. Detecting ozone and demonstrating its phytotoxicity in forested areas of Poland: a pilot study. Environ Pollut. 1993;80:301-305. DOI: 10.1016/0269-7491(93)90052-P.CrossrefGoogle Scholar

  • [3] Betzelberger AM, Yendrek CR, Sun J, Leisner CP, Nelson RL, Ort DR, et al. Ozone exposure response for U.S. soybean cultivars: linear reductions in photosynthetic potential, biomass, and yield. Plant Physiol. 2012;160:1827-1839. DOI: 10.1104/pp.112.205591.CrossrefGoogle Scholar

  • [4] Booker FL, Muntifering R, McGrath M, Burkey KO, Decoteau D, Fiscus EL, et al. The ozone component of global change: potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species. J Integr Plant Biol. 2009;51:337-351. DOI: 10.1111/j.1744-7909.2008.00805.x.Web of ScienceCrossrefGoogle Scholar

  • [5] Krzyżaniak M, Świerk D, Urbański P, Walerzak MT. Evaluation of the effect of environmental variables on health condition of Quercus robur L. in parks. Ecol Chem Eng S. 2013;20:689-700. DOI: 10.2478/eces-2013-0047.CrossrefWeb of ScienceGoogle Scholar

  • [6] Fiscus EL, Booker FL, Burkey KO. Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant Cell Environ. 2005;28:997-1011. DOI: 10.1111/j.1365-3040.2005.01349.x.CrossrefGoogle Scholar

  • [7] Dixon RA, Paiva NL. Stress-induced phenylpropanoid metabolism. Plant Cell 1995; 7:1085-1097. DOI: 10.1105/tpc.7.7.1085.CrossrefGoogle Scholar

  • [8] Betzelberger A. Current and future consequences of tropospheric ozone on soybean biochemistry, physiology and yield. [PhD thesis]. Urbana-Champaign: University of Illinois; 2013. http://hdl.handle.net/2142/42288.

  • [9] Saviranta NM, Julkunen-Tiitto R, Oksanen E, Karjalainen RO. Leaf phenolic compounds in red clover (Trifolium pratense L.) induced by exposure to moderately elevated ozone. Environ Pollut. 2010;158:440-446. DOI: 10.1016/j.envpol.2009.08.029.CrossrefWeb of ScienceGoogle Scholar

  • [10] Didyk NP, Blum OB. Natural antioxidants of plant origin against ozone damage of sensitive crops. Acta Physiol Plant. 2011;33:25-34. DOI: 10.1007/s11738-010-0527-5.Web of ScienceGoogle Scholar

  • [11] Betz GA, Knappe C, Lapierre C, Olbrich M, Welzl G, Langebartels C, et al. Ozone affects shikimate pathway transcripts and monomeric lignin composition in European beech (Fagus sylvatica L.). Eur J For Res. 2009;128:109-116. DOI: 10.1007/s10342-008-0216-8.CrossrefGoogle Scholar

  • [12] Richet N, Tozo K, Afif D, Banvoy J, Legay S, Dizengremel P, et al. The response to daylight or continuous ozone of phenylpropanoid and lignin biosynthesis pathways in poplar differs between leaves and wood. Planta 2012;236:727-737. DOI: 10.1007/s00425-012-1644-8.Web of ScienceCrossrefGoogle Scholar

  • [13] Saleem A, Loponen J, Pihlaja K, Oksanen E. Effects of long-term open-field ozone exposure on leaf phenolics of European silver birch (Betula pendula Roth). J Chem Ecol. 2001;27:1049-1062. DOI: 10.1023/A:1010351406931.CrossrefGoogle Scholar

  • [14] Peltonen PA, Vapaavuori E, Julkunen-Tiitto R. Accumulation of phenolic compounds in birch leaves is changed by elevated carbon dioxide and ozone. Global Change Biol. 2005;11:1305-1324. DOI: 10.1111/j.1365-2486.2005.00979.x.CrossrefGoogle Scholar

  • [15] Singh AA, Agrawal SB, Shahi JP, Agrawal M. Investigating the response of tropical maize (Zea mays L.) cultivars against elevated levels of O3 at two developmental stages. Ecotoxicology 2014;23:1447-1463. DOI: 10.1007/s10646-014-1287-6.CrossrefWeb of ScienceGoogle Scholar

  • [16] He X, Huang W, Chen W, Dong T, Liu C, Chen Z, et al. Changes of main secondary metabolites in leaves of Ginkgo biloba in response to ozone fumigation. J Environ Sci. 2009;21:199-203. DOI: 10.1016/S1001-0742(08)62251-2.CrossrefWeb of ScienceGoogle Scholar

  • [17] Haikio E, Freiwald V, Julkunen-Tiitto R, Beuker E, Holopainen T, Oksanen E. Differences in leaf characteristics between ozone-sensitive and ozone-tolerant hybrid aspen (Populus tremula × Populus tremuloides) clones. Tree Physiol. 2009;29:53-66. DOI: 10.1093/treephys/tpn005.CrossrefWeb of ScienceGoogle Scholar

  • [18] Sarkar A, Singh AA, Agrawal SB, Ahmad A, Rai SP. Cultivar specific variations in antioxidative defense system, genome and proteome of two tropical rice cultivars against ambient and elevated ozone. Ecotox Environ Safe. 2015;115:101-111. DOI: 10.1016/j.ecoenv.2015.02.010.CrossrefWeb of ScienceGoogle Scholar

  • [19] Chaudhary N, Agrawal SB. The role of elevated ozone on growth, yield and seed quality amongst six cultivars of mung bean. Ecotox Environ Safe. 2015;111:286-294. DOI: 10.1016/j.ecoenv.2014.09.018.Web of ScienceCrossrefGoogle Scholar

  • [20] Saitanis CJ, Riga-Karandinos AN, Karandinos MG. Effect of ozone on chlorophyll and quantum yield of tobacco (Nicotiana tabacum L.). Chemosphere. 2001;42:945-953. DOI: 10.1016/S0045-6535(00)00158-2.CrossrefGoogle Scholar

  • [21] Morgan PB, Ainsworth EA, Long SP. How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant Cell Environ. 2003;26:1317-1328. DOI: 10.1046/j.0016-8025.2003.01056.x.CrossrefGoogle Scholar

  • [22] Dėdelienė K, Juknys R. Response of several spring barley cultivars to UV-B radiation and ozone treatment. Environ Res Engin Manage. 2010;4:13-19.Google Scholar

  • [23] Goumenaki E, Taybi T, Borland A, Barnes J. Mechanisms underlying the impacts of ozone on photosynthetic performance. Environ Exp Bot. 2010;69:259-266. DOI: 10.1016/j.envexpbot.2010.04.011.CrossrefWeb of ScienceGoogle Scholar

  • [24] Caregnato FF, Bortolin RC, Junior AMD, Moreira JCF. Exposure to elevated ozone levels differentially affects the antioxidant capacity and the redox homeostasis of two subtropical Phaseouls vulgaris L. varieties. Chemosphere 2013;93:320-330. http://dx.doi.org/10.1071/FP11192.Crossref

  • [25] Anderson PD, Palmer B, Houpis JLJ, Smith MK, Pushnik JC. Chloroplastic responses of ponderosa pine (Pinus ponderosa) seedlings to ozone exposure. Environ Int. 2003;29:407-413. DOI: 10.1016/S0160-4120(02)00177-0.CrossrefGoogle Scholar

  • [26] Horbowicz M, Wiczkowski W, Koczkodaj D, Saniewski M. Effects of methyl jasmonate on accumulation of flavonoids in seedlings of common buckwheat (Fagopyrum esculentum Moench). Acta Biol Hungar. 2011;62:265-278. DOI: 10.1556/ABiol.62.2011.3.6.Web of ScienceCrossrefGoogle Scholar

  • [27] Wiczkowski W, Szawara-Nowak D, Dębski H, Mitrus J, Horbowicz M. Comparison of flavonoids profile in sprouts of common buckwheat cultivars and wild tartary buckwheat. Int J Food Sci Tech. 2014;49:1977-1984. DOI:10.1111/ijfs.12484.CrossrefWeb of ScienceGoogle Scholar

  • [28] Horbowicz M, Grzesiuk A, Dębski H, Koczkodaj D, Saniewski M. Methyl jasmonate inhibits anthocyanins synthesis in seedlings of common buckwheat (Fagopyrum esculentum Moench). Acta Biol Cracow Bot. 2008;50:71-78.Google Scholar

  • [29] Horbowicz M, Dębski H, Wiczkowski W, Szawara-Nowak J, Koczkodaj D, Mitrus J et al. The impact of short-term exposure to Pb and Cd on flavonoids composition and seedlings growth of common buckwheat cultivars. Pol J Environ Stud. 2013;22:1723-1730.Google Scholar

  • [30] Lichtenthaler HK, Welburn AR. Determination of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochem Soc Trans. 1983;603:591-592.Google Scholar

  • [31] Barańska K, Klech T. Roczna ocena jakości powietrza w województwie mazowieckim. Raport za rok 2013. 2014. http://wios.warszawa.pl/pl/publikacje-wios/publikacje/962,Roczna-Ocena-Jakosci-Powietrza-w-wojewodztwie-mazowieckim-Raport-za-rok-2013.html.

  • [32] Ohnishi O. Analyses of genetic variants in common buckwheat Fagopyrum esculentum Moench: a review. Fagopyrum. 1990;10:12-22. DOI: 10.1266/jjg.62.397.CrossrefGoogle Scholar

  • [33] Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Rad Biol Med. 1996;20:933-956. DOI: 10.1016/0891-5849(95)02227-9.CrossrefGoogle Scholar

  • [34] Booker FL, Miller JE. Phenylpropanoid metabolism and phenolic composition of soybean (Glycine max) leaves following exposure to ozone. J Exp Bot. 1998;49:1191-1202. DOI: 10.1093/jxb/49.324.1191.CrossrefGoogle Scholar

  • [35] Mikkelsen TN, Dodell B, Lutz C. Changes in pigment concentration and composition in Norway spruce induced by long-term exposure to low levels of ozone. Environ Pollut. 1995;87:197-205. DOI: 10.1016/0269-7491(94)P2607-B.CrossrefGoogle Scholar

  • [36] Kollner B, Krause GHM. Changes in carbohydrates, leaf pigments and yield in potatoes induced by different ozone exposure regimes. Agric Ecosyst Environ. 2000;78:149-158. DOI: 10.1016/S0167-8809(99)00118-8.CrossrefGoogle Scholar

  • [37] Holzwarth AR, Miloslavina Y, Nilkens M, Jahns P. Identification of two quenching sites active in the regulation of photosynthetic light-harvesting studied by time-resolved fluorescence. Chem Phys Lett. 2009;483:262-267. DOI: 10.1016/j.cplett.2009.10.085.CrossrefWeb of ScienceGoogle Scholar

  • [38] Cazzonelli CI. Carotenoids in nature: insights from plants and beyond. Funct Plant Biol. 2011;38:833-847. DOI: 10.1071/FP11192.CrossrefGoogle Scholar

  • [39] Wittig VE, Ainsworth EA, Naidu SL, Karnosky DF, Long SP. Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis. Global Change Biol. 2009;15:396-424. DOI: 10.1111/j.1365-2486.2008.01774.x.CrossrefGoogle Scholar

About the article

Published Online: 2017-10-11

Published in Print: 2017-09-01

Citation Information: Ecological Chemistry and Engineering S, Volume 24, Issue 3, Pages 457–465, ISSN (Online) 1898-6196, DOI: https://doi.org/10.1515/eces-2017-0031.

Export Citation

© 2017 Henryk Dębski et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in