Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Education Studies

Editor-in-Chief: Bastiaens, Theo

Open Access
Online
ISSN
2544-7831
See all formats and pricing
More options …

Calculators as Facilitators of Understanding Computational and Mathematical Contexts

Jan Guncaga / Lilla Korenova / Jozef Hvorecky
Published Online: 2019-11-20 | DOI: https://doi.org/10.1515/edu-2019-0012

Abstract

Learning is a complex phenomenon. Contemporary theories of education underline active participation of learners in their learning processes. One of the key arguments supporting this approach is the learner’s simultaneous and unconscious development of their ability of “learning to learn”. This ability belongs to the soft skills highly valued by employers today.

For Mathematics Education, it means that teachers have to go beyond making calculations and memorizing formulas. We have to teach the subject in its social context. When the students start understanding the relationship between real-life problems and the role of numbers and formulas for their solutions, their learning becomes a part of their tacit knowledge. Below we explain the theoretical background of our approach and provide examples of such activities.

Keywords: calculator; mathematics education; computational; mathematical context

References

  • Bianco, T., & Ulm, V. (2010). Mathematics Education with Technology – Experiences in Europe. Augsburg: University of Augsburg.Google Scholar

  • Csachová, L., & Jurecková, M. (2018). Notes to the problems with figures at school mathematics. In D. Szarková, D. Richtáriková, P. Letavaj & J. Gabková, (Eds.), 17th Conference on Applied Mathematics, APLIMAT 2018 – Proceedings, 270-279. Bratislava: Slovak Technical University.Google Scholar

  • Charpak, G. (Ed.). (1997). La main à la pâte. Les sciences à l’école primaire. Paris: Flammarion. https://www.fondation-lamap.org/en/international-resources, retrieved on Feb 28, 2019.

  • Dostál, J., & Kropáč, J. (2017). General principles of shaping teaching content for informatics as a teaching subject, Turkish Online Journal of Educational Technology, Volume 2017, Issue November, Special Issue INTE, November 2017, 34-40.Google Scholar

  • Education Council (2006). Recommendation of the European Parliament and the Council of 18 December 2006 on key competencies for lifelong learning. Brussels: Official Journal of the European Union, 30.12.2006.Google Scholar

  • Guncaga, J., Korenova, L., & Kostrub, D. (2018). The educational research focused on the development of mobile technologies in education. In M. Artois, (Ed.), Teaching with technology: Perspectives, challenges and future directions, pp. 57-115. New York: NOVA Science Publisher.Google Scholar

  • Greer, B. (1997). Modelling reality in mathematics classrooms: The case of word problems. Learning and instruction, 7(4), 293-307.Google Scholar

  • Haberlandt, K. (1997). Cognitive Psychology. Boston: Allyn and Bacon.Google Scholar

  • Hejný, M. et al. (2006). Creative Teaching in Mathematics. Prague: Charles University.Google Scholar

  • Hvorecký, J. (2006). Hyperbolische Funktionen. In: CASIO: Anwendungsbezogener Mathematikunterricht mit Graphiktaschenrechnerrn. Bildungverlag EINS, 89-93.Google Scholar

  • Hvorecky, J., & Korenova, L. (2018). Learning Critical Thinking Without Teacher’s Presence. In M. Turčáni, Z. Balogh, M. Munk, J. Kapusta, Ľ. Benko, (Eds.), DIVAI 2018, 293-302. Bratislava: Wolters Kluver.Google Scholar

  • Karagiori, Y.,& Symeonu, L. (2005). Translating Constructivism into Instructional Design: Potential and Limitations. Educational Technology and Society, 8(1), 17-27.Google Scholar

  • Kendal, S., Creen, M. (2007). Introduction to Knowledge Engineering. Springer-Verlag: London.Google Scholar

  • Kónya, E., & Kovács, Z. (2019). Do Calculators Support Inductive Thinking? The Electronic Journal of Mathematics and Technology, 13(2), 181-189.Google Scholar

  • Kovács, Z., Recio, T., & Vélez, M. P. (2018). Using automated reasoning tools in GeoGebra in the teaching and learning of proving in geometry. Journal for Technology in Mathematics Education, 25(2), 33-51.Google Scholar

  • Lovászová, G., & Hvorecký, J. (2002). When There is More Ways to Get There… In W-C. Yang, S-C. Chu, Z. Karian, G. Fitz-Gerald (Eds.), Proceedings of the Seventh Asian Technology Conference in Mathematics, ATCM 2002, 263-272, Melakka: Multimedia University.Google Scholar

  • Muller, E., Buteau, C., Klincsik, M., Perjési-Hámori, I., & Sarvári, C. (2009). Systemic integration of evolving technologies in undergraduate mathematics education and its impact on student retention. Journal for Technology in Mathematics Education, 40(1), 139-155.Google Scholar

  • Papert, S., & Harel, I. (1991). Constructionism. New York: Ablex Publishing Corporation.Google Scholar

  • Prodromou, T., & Lavicza, Zs. (2017). Integrating technology into mathematics education in an entire educational system – Reaching a critical mass of teachers and schools. International Journal for Technology in Mathematics Education, 24(3), 129-135.Google Scholar

  • Prodromou, T., Lavicza, Zs., & Koren, B. (2015). Increasing students’ involvement in technology-supported mathematics lesson sequences. Journal for Technology in Mathematics Education, 22(4), 169-178.Google Scholar

  • Pirrie, A., & Thoutenhoofd, E. D. (2013). Learning to learn in the European Reference Framework for lifelong learning. Oxford Review of Education, 39(5), 609-626.Web of ScienceCrossrefGoogle Scholar

  • Rábeková, L., & Hvorecký, J. (2015). Learning Strategies for Small Groups of Professionals. In Proceedings of the international conference on Interactive Collaborative Learning ICL 2015, pp. 764-770. Piscataway, New Jersey: IEEE.Google Scholar

  • Ruthven, K. (2007). Teachers, technologies and the structures of schooling, In Pitta-Pantazi, D., & Philippou, G. (Eds.), Proceedings to CERME 5, pp. 52-67. Nicosia: University of Cyprus.Google Scholar

  • Verma, C., Stoffová, V., & Illés, Z. (2018). An ensemble approach to identifying the student gender towards information and communication technology awareness in European schools using machine learning. International Journal of Engineering and Technology (UAE), 7(4), 3392-3396. doi:10.14419/ijet.v7i4.14045CrossrefGoogle Scholar

About the article

Received: 2019-04-17

Accepted: 2019-10-15

Published Online: 2019-11-20


Citation Information: Open Education Studies, Volume 1, Issue 1, Pages 177–183, ISSN (Online) 2544-7831, DOI: https://doi.org/10.1515/edu-2019-0012.

Export Citation

© 2019 Jan Guncaga et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 Public License. BY 4.0

Comments (0)

Please log in or register to comment.
Log in