Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Energy Harvesting and Systems

Materials, Mechanisms, Circuits and Storage

Editor-in-Chief: Lublow, Michael

4 Issues per year

See all formats and pricing
More options …

IoT Energy Storage - A Forecast

Fredrik Häggström / Jerker Delsing
Published Online: 2018-11-08 | DOI: https://doi.org/10.1515/ehs-2018-0010


Exponential growth in computing, wireless communication, and energy storage efficiency is key to allowing smaller and scalable IoT solutions. These advancements have made it possible to power devices from energy harvesters (EH) and explore other energy storage solutions that can increase the lifetime and robustness of IoT devices. We summarize current trends and limits for the current paradigm as the basis of our forecast. The trend shows that conventional ceramic capacitors are sufficient for energy storage for today’s EH powered wireless IoT devices and that in the future, IoT devices can either perform more advanced tasks with their current volume or be shrunk in size.

Keywords: energy harvesting; energy storage; IoT; trends; industry; size; wireless transceiver


  • ARM. 2009. “ARM 180nm Ultra Low Power Platform.” http://infocenter.arm.com/help/topic/com.arm.doc.pfl0307-1/PIPD\_Platform\_TSMC\_180ULL\_BR\_NC.pdf.Google Scholar

  • Bérut A., A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, and E. Lutz. 2012 “Experimental Verification of Landauer/’s Principle Linking Information and Thermodynamics.” Nature 483 (7388): 187–9.Google Scholar

  • Borges R. S., A. L. M. Reddy, M.-T. F. Rodrigues, H. Gullapalli, K. Balakrishnan, G. G. Silva, and P. M. Ajayan. 2013. “Supercapacitor Operating at 200 Degrees Celsius.” Scientific Reports 3.Google Scholar

  • DCN. 2017. “Super Capacitors.” http://www.illinoiscapacitor.com/ pdf/seriesDocuments/DCN%20series.pdf, 407DCN2R7Q.Google Scholar

  • Denning P. J., and T. G. Lewis. 2016 “Exponential Laws of Computing Growth.” Communications of the ACM 60 (1): 54–65.Google Scholar

  • El-Kady M. F., and R. B. Kaner. 2013. “Scalable Fabrication of High-Power Graphene Micro-Supercapacitors for Flexible and On-chip Energy Storage.” Nature Communications 4: 1475.Google Scholar

  • Frank M. P. 2002 “The Physical Limits of Computing.” Computing in Science & Engineering 4 (3): 16–26.Google Scholar

  • Hibino T., K. Kobayashi, M. Nagao, and S. Kawasaki. 2015. “High-Temperature Supercapacitor with a Proton-Conducting metal Pyrophosphate Electrolyte.” Scientific Reports 5.Google Scholar

  • Hu X., C. Zou, C. Zhang, and Y. Li. 2017. “Technological Developments in Batteries: A Survey of Principal Roles, Types, and Management Needs.” IEEE Power and Energy Magazine 15 (5): 20–31.Google Scholar

  • Semiconductors. 2015. “International Technology Roadmap for Semiconductors (ITRS).” https://www.semiconductors. org/clientuploads/Research\_Technology/ITRS/2015/ 0\_2015%20ITRS%202.0%20Executive%20Report%20(1).pdf.Google Scholar

  • Kim N. S., T. Austin, D. Baauw, T. Mudge, K. Flautner, J. S. Hu, M. J. Irwin, M. Kandemir, and V. Narayanan. 2003. “Leakage Current: Moore’s Law Meets Static Power.” Computer 36 (12): 68–75.Google Scholar

  • Kim S.-K., H. J. Kim, J.-C. Lee, P. V. Braun, and H. S. Park. 2015. “Extremely Durable, Flexible Supercapacitors with Greatly Improved Performance at High Temperatures.” ACS Nano 9 (8): 8569–77.Google Scholar

  • Kulkarni C., G. Biswas, and X. Koutsoukos. 2009. “A Prognosis Case Study for Electrolytic Capacitor Degradation in dc-dc Converters.” In PHM Conference.Google Scholar

  • Liu C., Z. Yu, D. Neff, A. Zhamu, and B. Z. Jang. 2010. “Graphene-Based Supercapacitor with an Ultrahigh Energy Density.” Nano Letters 10 (12): 4863–8.Google Scholar

  • Merrett G. V., and A. S. Weddell. 2012. “Supercapacitor Leakage in Energy-Harvesting Sensor Nodes: Fact or Fiction?” In 2012 Ninth International Conference on Networked Sensing Systems (INSS). IEEE 2012, 1–5.Google Scholar

  • muRata. 2018. “Capacitor Data Sheet.” http://psearch.en.murata. com/capacitor/product/GRM188R6YA106MA73%23.pdf, gRM188R6YA106MA73.Google Scholar

  • Murmann B. “Adc Performance Survey 1997-2013.” [Online]. Available: http://web.stanford.edu/murmann/adcsurvey.htmlGoogle Scholar

  • Narendra P., S. Duquennoy, and T. Voigt. 2015. “Ble and Ieee 802.15. 4 in the Iot: Evaluation and Interoperability Considerations.” In International Internet of Things Summit, 427–38. Springer.Google Scholar

  • Nichicon. 2017. “Aluminum Electrolytic Capacitors.” http://nichicon-us.com/english/products/pdfs/e-ucl.pdf, uCL1V221MCL6GS.Google Scholar

  • Nomura T., N. Kawano, J. Yamamatsu, T. Arashi, Y. Nakano, and A. Sato. 1995. “Aging Behavior of Ni-Electrode Multilayer Ceramic Capacitors with x7r Characteristics.” Japanese Journal of Applied Physics 34 (9S): 5389.Google Scholar

  • Pan M.-J., and C. A. Randall. 2010. “A Brief Introduction to Ceramic Capacitors,” IEEE Electrical Insulation Magazine 26 (3).Google Scholar

  • Roundy S., P. K. Wright, and J. Rabaey. 2003. “A Study of Low Level Vibrations as a Power Source for Wireless Sensor nodes.” Computer Communications 26 (11): 1131–44. Ubiquitous Computing. [Online]. Available: http://www.sciencedirect. com/science/article/pii/S0140366402002487Google Scholar

  • Sedlakova V., J. Sikula, J. Majzner, P. Sedlak, T. Kuparowitz, B. Buergler, and P. Vasina. 2016. “Supercapacitor Degradation Assesment by Power Cycling and Calendar Life Tests.” Metrology and Measurement Systems 23 (3): 345–58.Google Scholar

  • Shaikh F. K., and S. Zeadally. 2016. “Energy Harvesting in Wireless Sensor Networks: A Comprehensive Review.” Renewable and Sustainable Energy Reviews 55 (Supplement C): 1041–54. [Online]. Available: http://www.sciencedirect.com/science/ article/pii/S1364032115012629.Google Scholar

  • Shannon C. E. 1949. “Communication in the Presence of Noise.” Proceedings of the IRE 37 (1): 10–21.Google Scholar

  • Smith N. J., B. Rangarajan, M. T. Lanagan, and C. G. Pantano. 2009. “Alkali-Free Glass as a High Energy Density Dielectric Material.” Materials Letters 63 (15): 1245–48.Google Scholar

  • Tang H., and H. A. Sodano. 2013. “Ultra High Energy Density Nanocomposite Capacitors with Fast Discharge Using Ba 0.2 Sr 0.8 TiO 3 Nanowires.” Nano Letters 13 (4): 1373–9.Google Scholar

About the article

Published Online: 2018-11-08

Published in Print: 2018-11-27

Citation Information: Energy Harvesting and Systems, Volume 5, Issue 3-4, Pages 43–51, ISSN (Online) 2329-8766, ISSN (Print) 2329-8774, DOI: https://doi.org/10.1515/ehs-2018-0010.

Export Citation

© 2018 Walter de Gruyter Inc., Boston/Berlin.Get Permission

Comments (0)

Please log in or register to comment.
Log in