Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Energy Harvesting and Systems

Materials, Mechanisms, Circuits and Storage

Editor-in-Chief: Lublow, Michael

4 Issues per year

See all formats and pricing
More options …

A Review on Piezoelectric Energy Harvesting: Materials, Methods, and Circuits

Shashank Priya
  • Corresponding author
  • Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, VA 24061, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hyun-Cheol Song / Yuan Zhou / Ronnie Varghese / Anuj Chopra / Sang-Gook Kim / Isaku Kanno / Liao Wu / Dong Sam Ha / Jungho Ryu / Ronald G. Polcawich
Published Online: 2017-02-01 | DOI: https://doi.org/10.1515/ehs-2016-0028


Piezoelectric microelectromechanical systems (PiezoMEMS) are attractive for developing next generation self-powered microsystems. PiezoMEMS promises to eliminate the costly assembly for microsensors/microsystems and provide various mechanisms for recharging the batteries, thereby, moving us closer towards batteryless wireless sensors systems and networks. In order to achieve practical implementation of this technology, a fully assembled energy harvester on the order of a quarter size dollar coin (diameter=24.26 mm, thickness=1.75 mm) should be able to generate about 100 μW continuous power from low frequency ambient vibrations (below 100 Hz). This paper reviews the state-of-the-art in microscale piezoelectric energy harvesting, summarizing key metrics such as power density and bandwidth of reported structures at low frequency input. This paper also describes the recent advancements in piezoelectric materials and resonator structures. Epitaxial growth and grain texturing of piezoelectric materials is being developed to achieve much higher energy conversion efficiency. For embedded medical systems, lead-free piezoelectric thin films are being developed and MEMS processes for these new classes of materials are being investigated. Non-linear resonating beams for wide bandwidth resonance are also reviewed as they would enable wide bandwidth and low frequency operation of energy harvesters. Particle/granule spray deposition techniques such as aerosol-deposition (AD) and granule spray in vacuum (GSV) are being matured to realize the meso-scale structures in a rapid manner. Another important element of an energy harvester is a power management circuit, which should maximize the net energy harvested. Towards this objective, it is essential for the power management circuit of a small-scale energy harvester to dissipate minimal power, and thus it requires special circuit design techniques and a simple maximum power point tracking scheme. Overall, the progress made by the research and industrial community has brought the energy harvesting technology closer to the practical applications in near future.

Keywords: energy harvesting; piezoelectric; MEMS; PiezoMEMS; electromechanical coupling; power density; epitaxial PZT; grain texturing; lead-free; non-linear resonance; aerosol deposition (AD)/granule spray in vacuum (GSV); cantilever; maximum power point


  • Ahn, C.-W., C.-H. Choi, H.-Y. Park, S. Nahm, and S. Priya. 2008a. “Dielectric and Piezoelectric Properties of (1–x)(Na0. 5K0. 5) NbO3–xBaTiO3 Ceramics.” Journal of Materials Science 43:6784–97.Google Scholar

  • Ahn, C.-W., D. Maurya, C.-S. Park, S. Nahm, and S. Priya. 2009. “A Generalized Rule for Large Piezoelectric Response in Perovskite Oxide Ceramics and Its Application for Design of Lead-Free Compositions.” Journal of Applied Physics 105:114108.CrossrefGoogle Scholar

  • Ahn, C.-W., C.-S. Park, D. Viehland, S. Nahm, D.-H. Kang, K.-S. Bae, and S. Priya. 2008b. “Correlation Between Phase Transitions and Piezoelectric Properties in Lead-Free (K, Na, Li) NbO3–BaTiO3 Ceramics.” Japanese Journal of Applied Physics 47:8880.CrossrefGoogle Scholar

  • Aita, C. 1982. “Basal Orientation Aluminum Nitride Grown at Low Temperature by RF Diode Sputtering.” Journal of Applied Physics 53:1807–8.CrossrefGoogle Scholar

  • Akedo, J., and M. Lebedev. 2000. “Piezoelectric Properties and Poling Effect of Pb (Zr, Ti) O3 Thick Films Prepared for Microactuators by Aerosol Deposition.” Applied Physics Letters 77:1710.CrossrefGoogle Scholar

  • Aktakka, E. E. 2012. “Integration of Bulk Piezoelectric Materials into Microsystems.” Ph. D Dissertation in the University of Michigan.

  • Al-Ashtari, W., M. Hunstig, T. Hemsel, and W. Sextro. 2012. “Frequency Tuning of Piezoelectric Energy Harvesters by Magnetic Force.” Smart Materials and Structures 21:035019.CrossrefGoogle Scholar

  • Ando, B., S. Baglio, C. Trigona, N. Dumas, L. Latorre, and P. Nouet. 2010. “Nonlinear Mechanism in MEMS Devices for Energy Harvesting Applications.” Journal of Micromechanics and Microengineering 20:125020.CrossrefGoogle Scholar

  • Andosca, R. A., T. G. McDonald, V. Genova, S. Rosenberg, J. Keating, C. Benedixen, and J. Wu. 2012. “Experimental and Theoretical Studies on MEMS Piezoelectric Vibrational Energy Harvesters with Mass Loading.” Sensors and Actuators A: Physical 178:76–87.CrossrefGoogle Scholar

  • Apo, D. J. 2014. “Low Frequency Microscale Energy Harvesting.” Ph. D. Disseration in Virginia Tech.

  • Apo, D. J., M. Sanghadasa, and S. Priya. 2013. “Low Frequency ARC-based MEMS Structures for Vibration Energy Harvesting.” Paper presented at the 8th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 615–8.

  • Apo, D. J., M. Sanghadasa, and S. Priya. 2014. “Vibration Modeling of Arc-Based Cantilevers for Energy Harvesting Applications.” Energy Harvesting and Systems 1:57–68.Google Scholar

  • Baek, S., J. Park, D. Kim, V. Aksyuk, R. Das, S. Bu, D. Felker, J. Lettieri, V. Vaithyanathan, and S. Bharadwaja. 2011. “Giant Piezoelectricity on Si for Hyperactive MEMS.” Science 334:958–61.Google Scholar

  • Barton, D. A., S. G. Burrow, and L. R. Clare. 2010. “Energy Harvesting From Vibrations with a Nonlinear Oscillator.” Journal of Vibration and Acoustics 132:021009.CrossrefGoogle Scholar

  • Bayraktar, M., A. Chopra, F. Bijkerk, and G. Rijnders. 2014. “Nanosheet Controlled Epitaxial Growth of PbZr0.52ti0.48O3 Thin Films on Glass Substrates.” Applied Physics Letters 105:132904.Google Scholar

  • Bedekar, V., J. Oliver, and S. Priya. 2010. “Design and Fabrication of Bimorph Transducer for Optimal Vibration Energy Harvesting.” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 57:1513–23.Google Scholar

  • Beeby, S. P., M. J. Tudor, and N. White. 2006. “Energy Harvesting Vibration Sources for Microsystems Applications.” Measurement Science and Technology 17:R175.CrossrefGoogle Scholar

  • Bernstein, J., J. Bottari, K. Houston, G. Kirkos, R. Miller, B. Xu, Y. Ye, and L. Cross. 1999. “Advanced MEMS Ferroelectric Ultrasound 2D Arrays.” Paper Presented at the IEEE Ultrasonics Symposium, 1145–53.

  • Bertacchini, A., S. Scorcioni, D. Dondi, L. Larcher, P. Pavan, M. Todaro, A. Campa, G. Caretto, S. Petroni, and A. Passaseo. 2011. “AlN-based MEMS Devices for Vibrational Energy Harvesting Applications.” Paper Presented at the European Solid-State Device Research Conference, 119–22.

  • Bono, D. C., A. Sliski, J. Huang, and R. C. O’handley. 2009. “High Efficiency, Inductive Vibration Energy Harvester.” US Patent 7,569,952.

  • Brennecka, G. L., W. Huebner, B. A. Tuttle, and P. G. Clem. 2004. “Use of Stress to Produce Highly Oriented Tetragonal Lead Zirconate Titanate (PZT 40/60) Thin Films and Resulting Electrical Properties.” Journal of the American Ceramic Society 87:1459–65.CrossrefGoogle Scholar

  • Chandrakasan, A., R. Amirtharajah, J. Goodman, and W. Rabiner. 1998. “Trends in Low Power Digital Signal Processing.” Paper Presented at the IEEE International Symposium on Circuits and Systems, 604–7.

  • Chen, S. Y., and I. W. Chen. 1994. “Temperature–Time Texture Transition of Pb (Zr1–xTix)O3 Thin Films: I, Role of Pb‐Rich Intermediate Phases.” Journal of the American Ceramic Society 77:2332–6.CrossrefGoogle Scholar

  • Choi, W., Y. Jeon, J.-H. Jeong, R. Sood, and S.-G. Kim. 2006. “Energy Harvesting MEMS Device Based on Thin Film Piezoelectric Cantilevers.” Journal of Electroceramics 17:543–8.CrossrefGoogle Scholar

  • Chopra, A., M. Alexe, and D. Hesse. 2015a. “Fabrication and Orientation Control of Highly Cation-Ordered Epitaxial PbSc0.5ta0.5O3 Thin Films on Si (100.” Journal of Applied Physics 117:044102.Google Scholar

  • Chopra, A., M. Bayraktar, F. Bijkerk, and G. Rijnders. 2015b. “Controlled Growth of PbZr0.52ti 0.48O3 Using Nanosheet Coated Si (001.” Thin Solid Films 589:13–16.Google Scholar

  • Chopra, A., D. Pantel, Y. Kim, M. Alexe, and D. Hesse. 2013. “Microstructure and Ferroelectric Properties of Epitaxial Cation Ordered PbSc0. 5ta0. 5O3 Thin Films Grown on Electroded and Buffered Si (100.” Journal of Applied Physics 114:084107.Google Scholar

  • Chubachi, Y., K. Sato, and K. Kojima. 1984. “Reflection High Energy Electron Diffraction and X-Ray Studies of AlN Films Grown on Si (111) and Si (001) by Organometallic Chemical Vapour Deposition.” Thin Solid Films 122:259–70.Google Scholar

  • Cottone, F., L. Gammaitoni, H. Vocca, M. Ferrari, and V. Ferrari. 2012. “Piezoelectric Buckled Beams for Random Vibration Energy Harvesting.” Smart Materials and Structures 21:035021.CrossrefGoogle Scholar

  • Defosseux, M., M. Allain, E. Defay, and S. Basrour. 2012. “Highly Efficient Piezoelectric Micro Harvester for Low Level of Acceleration Fabricated with a CMOS Compatible Process.” Sensors and Actuators A: Physical 188:489–94.CrossrefGoogle Scholar

  • Deterre, M., E. Lefeuvre, Y. Zhu, M. Woytasik, A. Bosseboeuf, B. Boutaud, and R. Dal Molin. 2013. “Micromachined Piezoelectric Spirals and Ultra-Compliant Packaging for Blood Pressure Energy Harvesters Powering Medical Implants.” Paper Presented at the IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), 249–52.

  • Dini, M., A. Romani, M. Filippi, and M. Tartagni. 2016. “A Nanopower Synchronous Charge Extractor IC for Low-Voltage Piezoelectric Energy Harvesting with Residual Charge Inversion.” IEEE Transactions on Power Electronics 31:1263–74.CrossrefGoogle Scholar

  • Du, X.-h, J. Zheng, U. Belegundu, and K. Uchino. 1998. “Crystal Orientation Dependence of Piezoelectric Properties of Lead Zirconate Titanate Near the Morphotropic Phase Boundary.” Applied Physics Letters 72:2421–3.CrossrefGoogle Scholar

  • Dubois, M.-A., and P. Muralt. 2001. “Stress and Piezoelectric Properties of Aluminum Nitride Thin Films Deposited Onto Metal Electrodes by Pulsed Direct Current Reactive Sputtering.” Journal of Applied Physics 89:6389–95.CrossrefGoogle Scholar

  • Duffy, M., C. Wang, G. O’clock, S. McFarlane, and P. Zanzucchi. 1973. “Epitaxial Growth and Piezoelectric Properties of A1N, GaN, and GaAS on Sapphire or Spinel.” Journal of Electronic Materials 2:359–72.Google Scholar

  • Durou, H., G. A. Ardila-Rodriguez, A. Ramond, X. Dollat, C. Rossi, and D. Esteve. 2010. “Micromachined Bulk Pzt Piezoelectric Vibration Harvester to Improve Effectiveness Over Low Amplitude and Low Frequency Vibrations.” Proceedings of Power MEMS 27–30.Google Scholar

  • Dutoit, N. E., B. L. Wardle, and S.-G. Kim. 2005. “Design Considerations for MEMS-Scale Piezoelectric Mechanical Vibration Energy Harvesters.” Integrated Ferroelectrics 71:121–60.CrossrefGoogle Scholar

  • Elfrink, R., T. Kamel, M. Goedbloed, S. Matova, D. Hohlfeld, Y. Van Andel, and R. Van Schaijk. 2009a. “Vibration Energy Harvesting with Aluminum Nitride-Based Piezoelectric Devices.” Journal of Micromechanics and Microengineering 19:094005.CrossrefGoogle Scholar

  • Elfrink, R., V. Pop, D. Hohlfeld, T. Kamel, S. Matova, C. De Nooijer, M. Jambunathan, M. Goedbloed, L. Caballero, and M. Renaud. 2009b. “First Autonomous Wireless Sensor Node Powered by a Vacuum-Packaged Piezoelectric MEMS Energy Harvester.” Paper presented at the IEEE International Electron Devices Meeting (IEDM), 1–4.

  • Elfrink, R., M. Renaud, T. Kamel, C. De Nooijer, M. Jambunathan, M. Goedbloed, D. Hohlfeld, S. Matova, V. Pop, and L. Caballero. 2010. “Vacuum-Packaged Piezoelectric Vibration Energy Harvesters: Damping Contributions and Autonomy for a Wireless Sensor System.” Journal of Micromechanics and Microengineering 20:104001.CrossrefGoogle Scholar

  • Erturk, A., and D. J. Inman. 2008. “On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters.” Journal of Intelligent Material Systems and Structures 19:1311–25.Google Scholar

  • Erturk, A., and D. Inman. 2011. “Broadband Piezoelectric Power Generation on High-Energy Orbits of the Bistable Duffing Oscillator with Electromechanical Coupling.” Journal of Sound and Vibration 330:2339–53.Google Scholar

  • Fang, H.-B., J.-Q. Liu, Z.-Y. Xu, L. Dong, L. Wang, D. Chen, B.-C. Cai, and Y. Liu. 2006. “Fabrication and Performance of MEMS-Based Piezoelectric Power Generator for Vibration Energy Harvesting.” Microelectronics Journal 37:1280–4.CrossrefGoogle Scholar

  • Findeisen, D. 2013. System Dynamics and Mechanical Vibrations: An Introduction. Berlin: Springer Science & Business Media.Google Scholar

  • Funakubo, H., M. Dekkers, A. Sambri, S. Gariglio, I. Shklyarevskiy, and G. Rijnders. 2012. “Epitaxial PZT Films for MEMS Printing Applications.” MRS Bulletin 37:1030–8.CrossrefGoogle Scholar

  • Gardeniers, J., A. Smith, and C. Cobianu. 1995. “Characterisation of Sol-Gel PZT Films on Pt-Coated Substrates.” Journal of Micromechanics and Microengineering 5:153.CrossrefGoogle Scholar

  • Gasnier, P., J. Willemin, S. Boisseau, G. Despesse, C. Condemine, G. Gouvernet, et al. 2014. “An Autonomous Piezoelectric Energy Harvesting IC Based on a Synchronous Multi-Shot Technique.” IEEE Journal of Solid-State Circuits 49:1561–70.CrossrefGoogle Scholar

  • Ginsberg, J. H., and J. H. Ginsberg. 2001. Mechanical and Structural Vibrations: Theory and Applications. New York: Wiley.Google Scholar

  • Guyomar, D., A. Badel, E. Lefeuvre, and C. Richard. 2005. “Toward Energy Harvesting Using Active Materials and Conversion Improvement by Nonlinear Processing.” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 52:584–95.Google Scholar

  • Hajati, A. 2011. “Ultra Wide-Bandwidth Micro Energy Harvester.” Ph. D. Dissertation in Massachusetts Institute of Technology.

  • Hajati, A., and S.-G. Kim. 2011. “Ultra-Wide Bandwidth Piezoelectric Energy Harvesting.” Applied Physics Letters 99:083105.CrossrefGoogle Scholar

  • Hajati, A., R. Xu, and S.-G. Kim. 2011. “Wide Bandwidth Piezoelectric Micro Energy Harvester Based on Nonlinear Resonance.” Paper presented at the PowerMEMS.

  • Han, G., J. Ryu, W.-H. Yoon, J.-J. Choi, B.-D. Hahn, J.-W. Kim, D.-S. Park, C.-W. Ahn, S. Priya, and D.-Y. Jeong. 2011a. “Stress-Controlled Pb(Zr0. 52ti0. 48)O3 Thick Films by Thermal Expansion Mismatch Between Substrate and Pb(Zr0. 52ti0. 48)O3 Film.” Journal of Applied Physics 110:124101.Google Scholar

  • Han, G., J. Ryu, W. H. Yoon, J. J. Choi, B. D. Hahn, and D. S. Park. 2011b. “Effect of Film Thickness on the Piezoelectric Properties of Lead Zirconate Titanate Thick Films Fabricated by Aerosol Deposition.” Journal of the American Ceramic Society 94:1509–13.CrossrefGoogle Scholar

  • Hashemi, S., M. Sawan, and Y. Savaria. 2012. “A High-Efficiency Low-Voltage CMOS Rectifier for Harvesting Energy in Implantable Devices.” Biomedical Circuits and Systems, IEEE Transactions on 6:326–35.Google Scholar

  • Heidrich, N., F. Knöbber, S. Hampl, W. Pletschen, R. E. Sah, V. Cimalla, V. Lebedev, and O. Ambacher. 2011. AlN-Basierte Mikroelektromechanische Strukturen Für Implantate Paper Presented at Transducers 11:1642–4.

  • Hirasawa, T. H., Y. T.-T. Yen, P. K. Wright, A. P. Pisano, and L. Lin. 2010. “Design and Fabrication of Piezoelectric Aluminum Nitride Corrugated Beam Energy Harvester.” Paper presented at PowerMEMS, 211–4.

  • Hwang, G.-T., V. Annapureddy, J. H. Han, D. J. Joe, C. Baek, D. Y. Park, et al. 2015. “A Reconfigurable Rectified Flexible Energy Harvester via Solid-State Single Crystal Grown PMN–PZT.” Adv Energy Mater 5:1500051.CrossrefGoogle Scholar

  • Isarakorn, D., D. Briand, P. Janphuang, A. Sambri, S. Gariglio, J. Triscone, F. Guy, J. Reiner, C. Ahn, and N. De Rooij. 2011. “The Realization and Performance of Vibration Energy Harvesting MEMS Devices Based on an Epitaxial Piezoelectric Thin Film.” Smart Materials and Structures 20:025015.CrossrefGoogle Scholar

  • Jaffe, B. 1971. Piezoelectric Ceramics. New York: Academic.Google Scholar

  • Jeon, Y., R. Sood, J.-H. Jeong, and S.-G. Kim. 2005. “MEMS Power Generator with Transverse Mode Thin Film PZT.” Sensors and Actuators A: Physical 122:16–22.Google Scholar

  • Jiang, L., and R. Miles. 1999. “A Passive Damper for the Vibration Modes of the Head Actuator in Hard Disk Drives.” Journal of Sound and Vibration 220:683–94.CrossrefGoogle Scholar

  • Jo, S.-E., M.-S. Kim, and Y.-J. Kim. 2011. “A Resonant Frequency Switching Scheme of a Cantilever Based on Polyvinylidene Fluoride for Vibration Energy Harvesting.” Smart Materials and Structures 21:015007.CrossrefGoogle Scholar

  • Jumpertz, L., M. Carras, K. Schires, and F. Grillot. 2014. “Regimes of External Optical Feedback in 5.6 Μm Distributed Feedback Mid-Infrared Quantum Cascade Lasers.” Applied Physics Letters 105:131112.CrossrefGoogle Scholar

  • Kang, M.-G., W.-S. Jung, C.-Y. Kang, and S.-J. Yoon. 2016. “Recent Progress on PZT Based Piezoelectric Energy Harvesting Technologies.” Actuators 5:5.CrossrefGoogle Scholar

  • Kanno, I., S. Fujii, T. Kamada, and R. Takayama. 1997. “Piezoelectric Properties of c-Axis Oriented Pb(Zr,Ti)O3 Thin Films.” Applied Physics Letters 70:1378–80.CrossrefGoogle Scholar

  • Kanno, I., T. Ichida, K. Adachi, H. Kotera, K. Shibata, and T. Mishima. 2012. “Power-Generation Performance of Lead-Free (K, Na)NbO3 Piezoelectric Thin-Film Energy Harvesters.” Sensors and Actuators A: Physical 179:132–6.Google Scholar

  • Kim, H.-U., W.-H. Lee, H. R. Dias, and S. Priya. 2009. “Piezoelectric Microgenerators-Current Status and Challenges.” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 56:1555–68.Google Scholar

  • Kim, H., S. Priya, H. Stephanou, and K. Uchino. 2007. “Consideration of Impedance Matching Techniques for Efficient Piezoelectric Energy Harvesting.” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 54:1851–9.Google Scholar

  • Kong, N., T. S. Deyerle IV, and D. S. Ha. 2011. “Universal Power Management IC for Small-Scale Energy Harvesting with Adaptive Impedance Matching.” Paper presented at the IEEE Energy Conversion Congress and Exposition (ECCE), 3859–63.

  • Kong, N., and D. S. Ha. 2012. “Low-Power Design of a Self-Powered Piezoelectric Energy Harvesting System with Maximum Power Point Tracking.” IEEE Transactions on Power Electronics 27:2298–308.CrossrefGoogle Scholar

  • Kong, N., D. S. Ha, A. Erturk, and D. J. Inman. 2010. “Resistive Impedance Matching Circuit for Piezoelectric Energy Harvesting.” Journal of Intelligent Material Systems and Structures 31:1293–302.Google Scholar

  • Krulevitch, P., A. P. Lee, P. B. Ramsey, J. C. Trevino, J. Hamilton, and M. A. Northrup. 1996. “Thin Film Shape Memory Alloy Microactuators.” Journal of Microelectromechanical Systems 5:270–82.CrossrefGoogle Scholar

  • Kuwata, J., K. Uchino, and S. Nomura. 1982. “Dielectric and Piezoelectric Properties of 0.91pb(Zn1/3nb2/3)O3-0.09PbTiO3 Single Crystals.” Japanese Journal of Applied Physics 21:1298.Google Scholar

  • Lam, Y.-H., W.-H. Ki, and C.-Y. Tsui. 2006. “Integrated Low-Loss CMOS Active Rectifier for Wirelessly Powered Devices.” IEEE Transactions on Circuits and Systems II: Express Briefs 53:1378–82.CrossrefGoogle Scholar

  • Le, T. T., J. Han, A. Von Jouanne, K. Mayaram, and T. S. Fiez. 2006. “Piezoelectric Micro-Power Generation Interface Circuits.” IEEE Journal of Solid-State Circuits 41:1411–20.CrossrefGoogle Scholar

  • Ledermann, N., P. Muralt, J. Baborowski, S. Gentil, K. Mukati, M. Cantoni, A. Seifert, and N. Setter. 2003. “{1 0 0}-Textured, Piezoelectric Pb(Zrx, Ti1− x)O3 Thin Films for MEMS: Integration, Deposition and Properties.” Sensors and Actuators A: Physical 105:162–70.Google Scholar

  • Lee, B., S. Lin, W. Wu, X. Wang, P. Chang, and C. Lee. 2009. “Piezoelectric MEMS Generators Fabricated with an Aerosol Deposition PZT Thin Film.” Journal of Micromechanics and Microengineering 19:065014.CrossrefGoogle Scholar

  • Lefeuvre, E., A. Badel, C. Richard, and D. Guyomar. 2005. “Piezoelectric Energy Harvesting Device Optimization by Synchronous Electric Charge Extraction.” Journal of Intelligent Material Systems and Structures 16:865–76.Google Scholar

  • Lefeuvre, E., S. Risquez, J. Wei, M. Woytasik, and F. Parrain. 2014. “Self-Biased Inductor-Less Interface Circuit for Electret-Free Electrostatic Energy Harvesters.” Journal of Physics: Conference Series, PowerMEMS 557:012052.Google Scholar

  • Lefki, K., and G. Dormans. 1994. “Measurement of Piezoelectric Coefficients of Ferroelectric Thin Films.” Journal of Applied Physics 76:1764–7.CrossrefGoogle Scholar

  • Lei, A., R. Xu, A. Thyssen, A. C. Stoot, T. L. Christiansen, K. Hansen, R. Lou-Moller, E. V. Thomsen, and K. Birkelund. 2011. “MEMS-based Thick Film PZT Vibrational Energy Harvester.” Paper presented at the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 125–8.

  • Li, J., J. Slutsker, J. Ouyang, and A. Roytburd. 2004. “Contribution of Substrate to Converse Piezoelectric Response of Constrained Thin Films.” Journal of Materials Research 19:2853–8.Google Scholar

  • Li, X., and T. Tansley. 1990. “Laser‐Induced Chemical Vapor Deposition of AlN Films.” Journal of Applied Physics 68:5369–71.CrossrefGoogle Scholar

  • Liu, H., C. Lee, T. Kobayashi, C. J. Tay, and C. Quan. 2012. “Piezoelectric MEMS-Based Wideband Energy Harvesting Systems Using a Frequency-up-Conversion Cantilever Stopper.” Sensors and Actuators A: Physical 186:242–8.CrossrefGoogle Scholar

  • Lu, C., C.-Y. Tsui, and W.-H. Ki. 2011. “Vibration Energy Scavenging System with Maximum Power Tracking for Micropower Applications.” IEEE Transactions Very Large Scale Integrated VLSI System 19:2109–19.Google Scholar

  • Mann, B., and N. Sims. 2009. “Energy Harvesting From the Nonlinear Oscillations of Magnetic Levitation.” Journal of Sound and Vibration 319:515–30.Google Scholar

  • Mansour, M. O., M. H. Arafa, and S. M. Megahed. 2010. “Resonator with Magnetically Adjustable Natural Frequency for Vibration Energy Harvesting.” Sensors and Actuators A: Physical 163:297–303.CrossrefGoogle Scholar

  • Marin, A. 2013. “Mechanical Energy Harvesting for Powering Distributed Sensors and Recharging Storage Systems.” Ph. D. Dissertation in Virginia Tech.

  • Marin, A., S. Bressers, and S. Priya. 2011. “Multiple Cell Configuration Electromagnetic Vibration Energy Harvester.” Journal of Physics D: Applied Physics 44:295501.Google Scholar

  • Marin, A., and S. Priya. 2012. “Multi-Mechanism Vibration Harvester Combining Inductive and Piezoelectric Mechanisms.” Paper presented at the SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, 83411L-L–11.

  • Marinkovic, B., and H. Koser. 2009. “Smart Sand-a Wide Bandwidth Vibration Energy Harvesting Platform.” Applied Physics Letters 94:103505.CrossrefGoogle Scholar

  • Martin, F., P. Muralt, M.-A. Dubois, and A. Pezous. 2004. “Thickness Dependence of the Properties of Highly c-Axis Textured AlN Thin Films.” Journal of Vacuum Science & Technology A 22:361–5.Google Scholar

  • Marzencki, M., Y. Ammar, and S. Basrour. 2007. “Design, Fabrication and Characterization of a Piezoelectric MEMS, Vibration Energy Scavenging.” Paper presented at the Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP’07), 350–3.

  • Massaro, A., S. De Guido, I. Ingrosso, R. Cingolani, M. De Vittorio, M. Cori, A. Bertacchini, L. Larcher, and A. Passaseo. 2011. “Freestanding Piezoelectric Rings for High Efficiency Energy Harvesting at Low Frequency.” Applied Physics Letters 98:053502.CrossrefGoogle Scholar

  • Meng, W., J. Heremans, and Y. Cheng. 1991. “Epitaxial Growth of Aluminum Nitride on Si (111) by Reactive Sputtering.” Applied Physics Letters 59:2097–9.CrossrefGoogle Scholar

  • Miller, L. M., E. Halvorsen, T. Dong, and P. K. Wright. 2011. “Modeling and Experimental Verification of Low-Frequency MEMS Energy Harvesting From Ambient Vibrations.” Journal of Micromechanics and Microengineering 21:045029.CrossrefGoogle Scholar

  • Mitcheson, P. D., E. K. Reilly, T. Toh, P. K. Wright, and E. M. Yeatman. 2007. “Performance Limits of the Three MEMS Inertial Energy Generator Transduction Types.” Journal of Micromechanics and Microengineering 17:S211.CrossrefGoogle Scholar

  • Morimoto, K., I. Kanno, K. Wasa, and H. Kotera. 2010. “High-Efficiency Piezoelectric Energy Harvesters of c-Axis-Oriented Epitaxial PZT Films Transferred Onto Stainless Steel Cantilevers.” Sensors and Actuators A: Physical 163:428–32.CrossrefGoogle Scholar

  • Muralt, P., M. Marzencki, B. Belgacem, F. Calame, and S. Basrour. 2009a. “Vibration Energy Harvesting with PZT Micro Device.” Procedia Chemistry 1:1191–4.CrossrefGoogle Scholar

  • Muralt, P., R. Polcawich, and S. Trolier-McKinstry. 2009b. “Piezoelectric Thin Films for Sensors, Actuators, and Energy Harvesting.” MRS Bulletin 34:658–64.CrossrefGoogle Scholar

  • Norton, M. G., P. G. Kotula, and C. B. Carter. 1991. “Oriented Aluminum Nitride Thin Films Deposited by Pulsed‐Laser Ablation.” Journal of Applied Physics 70:2871–3.CrossrefGoogle Scholar

  • Park, J. C., J. Y. Park, and Y.-P. Lee. 2010. “Modeling and Characterization of Piezoelectric-Mode MEMS Energy Harvester.” Journal of Microelectromechanical Systems 19:1215–22.CrossrefGoogle Scholar

  • Park, S., and T. R. Shrout. 1997. “Ultrahigh Strain and Piezoelectric Behavior in Relaxor Based Ferroelectric Single Crystals.” Journal of Applied Physics 82:1804–11.CrossrefGoogle Scholar

  • Potrepka, D. M., G. R. Fox, L. M. Sanchez, and R. G. Polcawich. 2011. “Pt/TiO2 Growth Templates for Enhanced PZT Films and MEMS Devices.” Paper presented at the MRS, 67–72.

  • Priya, S. 2007. “Advances in Energy Harvesting Using Low Profile Piezoelectric Transducers.” Journal of Electroceramics 19:167–84.CrossrefGoogle Scholar

  • Priya, S. 2010. “Criterion for Material Selection in Design of Bulk Piezoelectric Energy Harvesters.” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 57:2610–12.Google Scholar

  • Priya, S., and D. J. Inman. 2009. “Energy harvesting technologies” Springer.

  • Qi, Y., J. Kim, T. D. Nguyen, B. Lisko, P. K. Purohit, and M. C. McAlpine. 2011. “Enhanced Piezoelectricity and Stretchability in Energy Harvesting Devices Fabricated From Buckled PZT Ribbons.” Nano Letters 11:1331–6.CrossrefGoogle Scholar

  • Ramadass, Y. K., and A. P. Chandrakasan. 2010. “An Efficient Piezoelectric Energy Harvesting Interface Circuit Using a Bias-Flip Rectifier and Shared Inductor.” IEEE Journal of Solid-State Circuits 45:189–204.CrossrefGoogle Scholar

  • Reilly, E. K., L. M. Miller, R. Fain, and P. Wright. 2009. “A Study of Ambient Vibrations for Piezoelectric Energy Conversion.” Proc. PowerMEMS 2009:312–15.Google Scholar

  • Renaud, M., K. Karakaya, T. Sterken, P. Fiorini, C. Van Hoof, and R. Puers. 2008. “Fabrication, Modelling and Characterization of MEMS Piezoelectric Vibration Harvesters.” Sensors and Actuators A: Physical 145:380–6.CrossrefGoogle Scholar

  • Rincón-Mora, G. A., and S. Yang. 2016. “Tiny Piezoelectric Harvesters: Principles, Constraints, and Power Conversion.” IEEE Trans on Circuits and Systems I: Regular Papers 63:639–49.Google Scholar

  • Roundy, S., and P. K. Wright. 2004. “A Piezoelectric Vibration Based Generator for Wireless Electronics.” Smart Materials and Structures 13:1131.CrossrefGoogle Scholar

  • Roundy, S., P. K. Wright, and J. Rabaey. 2003a. “A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes.” Computer Communications 26:1131–44.CrossrefGoogle Scholar

  • Roundy, S., P. K. Wright, and J. Rabaey. 2003b. Energy Scavenging for Wireless Sensor Networks. Kluwer Academic Publishers.Google Scholar

  • Ryu, J., J.-J. Choi, B.-D. Hahn, D.-S. Park, W.-H. Yoon, and K.-H. Kim. 2007. “Fabrication and Ferroelectric Properties of Highly Dense Lead-Free Piezoelectric (K0.5na0.5) NbO3 Thick Films by Aerosol Deposition.” Appl. Phys. Lett 90:152901.Google Scholar

  • Ryu, J., G. Han, T. K. Song, A. Welsh, S. Trolier-McKinstry, H. Choi, J.-P. Lee, J.-W. Kim, W.-H. Yoon, and J.-J. Choi. 2014. “Upshift of Phase Transition Temperature in Nanostructured PbTiO3 Thick Film for High Temperature Applications.” ACS Applied Materials & Interfaces 6:11980–7.Google Scholar

  • Saggini, S., S. Giro, F. Ongaro, and P. Mattavelli. 2010. “Implementation of Reactive and Resistive Load Matching for Optimal Energy Harvesting from Piezoelectric Generators.” Paper presented at the IEEE Workshop on Control and Modeling for Power Electronics (COMPEL), 1–6.

  • Sanchez, L. M., D. M. Potrepka, G. R. Fox, I. Takeuchi, K. Wang, L. A. Bendersky, and R. G. Polcawich. 2013. “Optimization of PbTiO3 Seed Layers and Pt Metallization for PZT-Based piezoMEMS Actuators.” J. Mater. Res 28:1920–31.CrossrefGoogle Scholar

  • Sankman, J., and D. Ma. 2014. “A 12-µw to 1.1-mW AIM Piezoelectric Energy Harvester for Time-Varying Vibrations with 450 nA IQ.” IEEE Trans. Power Electron 30:632–43.Google Scholar

  • Saxler, A., P. Kung, C. Sun, E. Bigan, and M. Razeghi. 1994. “High Quality Aluminum Nitride Epitaxial Layers Grown on Sapphire Substrates.” Applied Physics Letters 64:339–41.CrossrefGoogle Scholar

  • Sessler, G. M. 2001. “Electrets: Recent Developments.” Journal of Electrostatics 51–52:137–45.Google Scholar

  • Sharpes, N., A. Abdelkefi, and S. Priya. 2015. “Two-Dimensional Concentrated-Stress Low-Frequency Piezoelectric Vibration Energy Harvesters.” Applied Physics Letters 107:093901.CrossrefGoogle Scholar

  • Shen, D., J.-H. Park, J. Ajitsaria, S.-Y. Choe, H. C. Wikle III, and D.-J. Kim. 2008. “The Design, Fabrication and Evaluation of a MEMS PZT Cantilever with an Integrated Si Proof Mass for Vibration Energy Harvesting.” Journal of Micromechanics and Microengineering 18:055017.CrossrefGoogle Scholar

  • Shibata, K., K. Suenaga, K. Watanabe, F. Horikiri, A. Nomoto, and T. Mishima. 2011. “Improvement of Piezoelectric Properties of (K, Na)NbO3 Films Deposited by Sputtering.” Japanese Journal of Applied Physics 50:041503.CrossrefGoogle Scholar

  • Shim, M., J. Kim, J. Jeong, S. Park, and C. Kim. 2015. “Self-Powered 30 µw to 10 mW Piezoelectric Energy Harvesting System with 9.09 Ms/V Maximum Power Point Tracking Time.” IEEE J. Solid-State Circuits 50:2367–79.Google Scholar

  • Shiosaki, T., T. Yamamoto, T. Oda, and A. Kawabata. 1980. “Low‐Temperature Growth of Piezoelectric AlN Film by Rf Reactive Planar Magnetron Sputtering.” Applied Physics Letters 36:643–5.CrossrefGoogle Scholar

  • Sorimachi, A., H. Takahashi, and S. Tokonami. 2009. “Influence of the Presence of Humidity, Ambient Aerosols and Thoron on the Detection Responses of Electret Radon Monitors.” Radiation Measurements 44:111–15.CrossrefGoogle Scholar

  • Stevens, K., A. Ohtani, M. Kinniburgh, and R. Beresford. 1994. “Microstructure of AlN on Si (111) Grown by Plasma‐Assisted Molecular Beam Epitaxy.” Applied Physics Letters 65:321–3.CrossrefGoogle Scholar

  • Stoppel, F., C. Schröder, F. Senger, B. Wagner, and W. Benecke. 2011. “AlN-Based Piezoelectric Micropower Generator for Low Ambient Vibration Energy Harvesting.” Procedia Engineering 25:721–4.CrossrefGoogle Scholar

  • Tabesh, A., and L. G. Fréchette. 2010. “A Low-Power Stand-Alone Adaptive Circuit for Harvesting Energy From a Piezoelectric Micropower Generator.” Industrial Electronics, IEEE Transactions on 57:840–9.CrossrefGoogle Scholar

  • Takeda, F., T. Mori, and T. Takahashi. 1981. “Effect of Hydrogen Gas on c-Axis Oriented AlN Films Prepared by Reactive Magnetron Sputtering.” Japanese Journal of Applied Physics 20:L169.CrossrefGoogle Scholar

  • Ting-Ta, Y., T. Hirasawa, P. Wright, A. Pisano, and L. Liwei. 2011. “Corrugated Aluminum Nitride Energy Harvesters for High Energy Conversion 26. Effectiveness.” J. Micromech. Microeng 21:085037.Google Scholar

  • Trolier-McKinstry, S., and P. Muralt. 2004. “Thin Film Piezoelectrics for MEMS.” Journal of Electroceramics 12:7–17.CrossrefGoogle Scholar

  • Tsubouchi, K., and N. Mikoshiba. 1985. “Zero-Temperature-Coefficients SAW Devices on AlN Epitaxial Films.” IEEE Transactions on Sonics and Ultrasonics 32:634–44.Google Scholar

  • Tsujiura, Y., E. Suwa, H. Hida, K. Suenaga, K. Shibata, and I. Kanno. 2013. “Lead-Free Piezoelectric MEMS Energy Harvesters of Stainless Steel Cantilevers.” Paper Presented at the Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems, 474–7.

  • Tuttle, B., J. A. Voigt, T. J. Garino, D. C. Goodnow, R. W. Schwartz, D. L. Lamppa, T. J. Headley, and M. O. Eatough. 1992. “Chemically Prepared Pb(Zr,Ti)O3 Thin Films: The Effects of Orientation and Stress.” Paper presented at the IEEE International Symposium on Applications of Ferroelectrics, 344–8.

  • Uchino, K. 2009. Ferroelectric Devices, 2nd ed. CRC press.Google Scholar

  • Van Schaijk, R., R. Elfrink, T. Kamel, and M. Goedbloed. 2008. “Piezoelectric AlN Energy Harvesters for Wireless Autonomous Transducer Solutions.” Paper presented at the IEEE Sensors, 45–8.

  • Varghese, R. P. 2013. “MEMS Technologies for Energy Harvesting and Sensing.” Ph. D. Disseration in Virginia Tech.

  • Varghese, R., M. Williams, S. Gupta, and S. Priya. 2011. “Temperature-Time Transformation Diagram for Pb(Zr, Ti)O3 Thin Films.” Journal of Applied Physics 110:014109.CrossrefGoogle Scholar

  • Wang, Q.-M., X.-H. Du, B. Xu, and L. E. Cross. 1999. “Electromechanical Coupling and Output Efficiency of Piezoelectric Bending Actuators.” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 46:638–46.Google Scholar

  • Wang, X.-Y., C.-Y. Lee, Y.-C. Hu, W.-P. Shih, C.-C. Lee, J.-T. Huang, and P.-Z. Chang. 2008. “The Fabrication of Silicon-Based PZT Microstructures Using an Aerosol Deposition Method.” Journal of Micromechanics and Microengineering 18:055034.CrossrefGoogle Scholar

  • Wang, Z. L., and J. Song. 2006. “Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays.” Science 312:242–6.CrossrefGoogle Scholar

  • Wu, L., X.-D. Do, S.-G. Lee, and D. S. Ha, A Self-Powered and Optimal SSHI Circuit Integrated with an Active Rectifier for Piezoelectric Energy Harvesting to appear in IEEE Trans. on Circuits and Systems I.

  • Xu, R. 2012. “The Design of Low-Frequency, Low-G Piezoelectric Micro Energy Harvesters.” Ph. D. Dissertation in Massachusetts Institute of Technology.Google Scholar

  • Xu, R., and S. Kim. 2012. “Figures of Merits of Piezoelectric Materials in Energy Harvesters.” Paper presented at the Power MEMS.

  • Xu, R., and S. Kim. 2015. “Low-Frequency, Low-G MEMS Piezoelectric Energy Harvester.” Paper presented at the Power MEMS, 012013.

  • Xu, R., A. Lei, C. Dahl-Petersen, K. Hansen, M. Guizzetti, K. Birkelund, E. V. Thomsen, and O. Hansen. 2012a. “Fabrication and Characterization of MEMS-Based PZT/PZT Bimorph Thick Film Vibration Energy Harvesters.” Journal of Micromechanics and Microengineering 22:094007.CrossrefGoogle Scholar

  • Xu, R., A. Lei, C. Dahl-Petersen, K. Hansen, M. Guizzetti, K. Birkelund, E. V. Thomsen, and O. Hansen. 2012b. “Screen Printed PZT/PZT Thick Film Bimorph MEMS Cantilever Device for Vibration Energy Harvesting.” Sensors and Actuators A: Physical 188:383–8.CrossrefGoogle Scholar

  • Yen, T.-T., T. Hirasawa, P. K. Wright, A. P. Pisano, and L. Lin. 2011. “Corrugated Aluminum Nitride Energy Harvesters for High Energy Conversion Effectiveness.” Journal of Micromechanics and Microengineering 21:085037.CrossrefGoogle Scholar

  • Yeo, H. G., and S. Trolier-McKinstry. 2014. “{001} Oriented Piezoelectric Films Prepared by Chemical Solution Deposition on Ni Foils.” Journal of Applied Physics 116:014105.CrossrefGoogle Scholar

  • Yokoyama, S., T. Ozeki, T. Oikawa, and H. Funakubo. 2002. “Preparation of Orientation-Controlled Polycrystalline Pb(Zr, Ti)O3 Thick Films on (100) Si Substrates by Metalorganic Chemical Vapor Deposition and Their Electrical Properties.” Japanese Journal of Applied Physics 41:6705.CrossrefGoogle Scholar

  • Zhang, W., Y. Someno, M. Sasaki, and T. Hirai. 1993. “Low-Temperature Epitaxial Growth of AlN Films on Sapphire by Electron Cyclotron Resonance Plasma-Assisted Chemical Vapor Deposition.” Journal of Crystal Growth 130:308–12.CrossrefGoogle Scholar

  • Zhou, Y., D. J. Apo, and S. Priya. 2013a. “Dual-Phase Self-Biased Magnetoelectric Energy Harvester.” Applied Physics Letters 103:192909.CrossrefGoogle Scholar

  • Zhou, Q., S. Lau, D. Wu, and K. K. Shung. 2011. “Piezoelectric Films for High Frequency Ultrasonic Transducers in Biomedical Applications.” Progress in Materials Science 56:139–74.CrossrefGoogle Scholar

  • Zhou, Y., C.-S. Park, C.-H. Wu, D. Maurya, M. Murayama, A. Kumar, R. Katiyar, and S. Priya. 2013b. “Microstructure and Surface Morphology Evolution of Pulsed Laser Deposited Piezoelectric BaTiO3 Films.” Journal of Materials Chemistry C 1:6308–15.Google Scholar

  • Zhu, D., S. Roberts, J. Tudor, and S. Beeby. 2008. “Closed Loop Frequency Tuning of a Vibration-based Micro-Generator.” Paper presented at the Power MEMS, 229–32.

About the article

Published Online: 2017-02-01

Published in Print: 2017-01-01

H.-C.S. and A.C. acknowledges the support from Office of Basic Energy Sciences, Department of Energy (DE-FG02-06ER46290), Y.Z. and R.V. acknowledge support from AFOSR (FA9550-14-1-0376), S.-G.K. acknowledges the support from DARPA Grant (HR0011-06-1-0045), MIT-Iberian Nanotechnology Laboratory Program. Works at KIMS were supported by KIMS internal R&D programs (PNK4661 and PNK4991). Dong Ha’s work was supported in part by the Center for Integrated Smart Sensors funded by the Korea Ministry of Science, ICT & Future Planning as Global Frontier Project (CISS-2-3). S.P. acknowledges the financial support from Norfolk State University through NSF CREST program.

Citation Information: Energy Harvesting and Systems, Volume 4, Issue 1, Pages 3–39, ISSN (Online) 2329-8766, ISSN (Print) 2329-8774, DOI: https://doi.org/10.1515/ehs-2016-0028.

Export Citation

© 2017 Walter de Gruyter Inc., Boston/Berlin.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Neamul H Khansur, Udo Eckstein, Lisa Benker, Ulrike Deisinger, Benoit Merle, and Kyle G Webber
Ceramics International, 2018
K. Kamala Bharathi, Tripta Parida, Hanuma Kumar Dara, K. Ramesh Kumar, André M. Strydom, M. Sarathbavan, and K. Ramamurthi
The Journal of Physical Chemistry C, 2017
Carlo Trigona, Bruno Ando, and Salvatore Baglio
IEEE Transactions on Instrumentation and Measurement, 2017, Volume 66, Number 12, Page 3327
Venkateswarlu Annapureddy, Haribabu Palneedi, Geon-Tae Hwang, Mahesh Peddigari, Dae-Yong Jeong, Woon-Ha Yoon, Kwang-Ho Kim, and Jungho Ryu
Sustainable Energy Fuels, 2017
Eduard Dechant, Feodor Fedulov, Dmitrii V Chashin, Leonid Y Fetisov, Yuri K Fetisov, and Mikhail Shamonin
Smart Materials and Structures, 2017, Volume 26, Number 6, Page 065021

Comments (0)

Please log in or register to comment.
Log in