Jump to ContentJump to Main Navigation
Show Summary Details
More options …

European Journal of Ecology

2 Issues per year

Open Access
See all formats and pricing
More options …

Dietary habits of urban pigeons (Columba livia) and implications of excreta pH – a review

Dirk H. R. Spennemann
  • Corresponding author
  • Institute for Land, Water and Society; Charles Sturt University; PO Box 789; Albury NSW 2640, Australia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maggie J. Watson
  • Institute for Land, Water and Society; Charles Sturt University; PO Box 789; Albury NSW 2640, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-05-03 | DOI: https://doi.org/10.1515/eje-2017-0004


Pigeons are considered to be urban pests, causing untold damage to buildings and potentially impacting the health of humans who come into contact with them or their faeces. Pigeon faecal matter has been implicated in both health impacts and building damage, with the acidity of the excreta playing an important role. Purpose of the Review. This paper is a wide-ranging review of the chemical processes of excreta in the pigeon to aid our understanding of the potential problems of pigeons to buildings and human amenity in the urban space. The natural pH of pigeons is shown to vary based on the bird’s and age as well as reproductive stage. Key findings of the review. The influences of the altered diet between the rock dove (the wild progenitor of the feral pigeon) and the feral pigeon are detailed, indicating that the human-based diet of urban pigeons most likely causes the feral pigeon excreta to be more acidic than the rock dove excreta. This higher acidity is due in part to diet, but also to potential increases in faecal and/or uric acid volumes due to the low quality of human-based diets. Again, this area of interest is highly data deficient due to the few number of studies and unspecified dietary intake before pH measurement. Implications of the review. Humans are increasingly concerned about pigeon populations (and presumably their accumulated faeces) in the urban space, and control comprises a large part of the interaction between humans and feral pigeons. This review provides a greater understanding of feral pigeons and the true effects of their excreta.

Keywords: Columba livia; pH; Foraging; Diet; Excreta


  • Abd El-Khalek, E., Kalmar, I.D., Pasmans, F., Ducatelle, R., Werquin, G., Devloo, R. & Janssens, G.P.J. (2011) The effect of starch gelatinisation degree on intestinal morphology, intestinal pH and bacteriology in pigeons. Journal of Animal Physiology and Animal Nutrition, 95(1-2), 34-39.Google Scholar

  • Abegg, M.A., Cella, F.L., Faganello, J., Valente, P., Schrank, A. & Vainstein, M.H. (2006) Cryptococcus neoformans and Cryptococcus gattii isolated from the Excreta of Psittaciformes in a Southern Brazilian Zoological Garden. Mycopathologia, 161(2), 83-91.Google Scholar

  • Adam, M. & Grübl, P. (2004) Einfluss von Taubenkot auf die Oberfläche von Baustoffen. Prüfungsbericht Nr. 195.04 vom 26.8.2004. Darmstadt: Technische Universität Darmstadt, Institut für Massivbau.Google Scholar

  • Adeola, O. & Rogler, J. (1994) Comparative extraction methods for spectrophotometric analysis of uric acid in avian excreta. Archives of Animal Nutrition, 47(1), 1-10.Google Scholar

  • Alderson, C. (1991) Bird Deterrence [Pest Control-10290]. Preservation Note, nº 7. WashingtonGoogle Scholar

  • Ali, H.E., Khattab, S.A. & Al-Mukhtar, M. (2014) The effect of biodeterioration by bird droppings on the degradation of stone built. In: G. Lollino, D. Giordan, C. Marunteanu, B. Christaras, I. Yoshinori, & C. Margottini (Eds.), Engineering Geology for Society and Territory. Preservation of Cultural Heritage (Vol. 8, pp. 515-520). Cham: Springer.Google Scholar

  • Ali, S., Rakha, B.A., Iftikhar, H., Nadeem, M.S. & Rafique, M. (2013) Ecology of Feral Pigeon (Columba livia) in Urban Areas of Rawalpindi/ Islamabad, Pakistan. Pakistan Journal of Zoology, 45(5), 1229-1234.Google Scholar

  • Amirkhani, A., Baghaie, P., Taghvaee, A.A., Pourjafar, M.R. & Ansari, M. (2009) Isfahan’s Dovecotes: Remarkable Edifices of Iranian Vernacular Architecture. METU Journal of the Faculty of Architecture, 26(1), 177-186.Google Scholar

  • Amoruso, I., Fabbris, L., Mazza, M. & Caravello, G. (2014) Estimation of Feral Pigeon (Columba livia) population size using a novel Superimposed Urban Strata (SUS) method. Urban Ecosystems, 17(2), 597-612.CrossrefGoogle Scholar

  • Anderson, G. & Brain, E. (1985) Postrenal modification of urine in birds. American Journal of Physiology, 248(1), R93-98.Google Scholar

  • Anonymous (1901, Dec 7). The pigeons of Vienna. Freeman’s Journal (Sydney), p. 32.Google Scholar

  • Ariyoshi, S. & Morimoto, H. (1956) Studies on the nitrogen metabolism in the fowl. 1. Separation of urine for the nutritional balance. Bulletin of the National Institute for Agricultural Science (Tokyo), G12, 37-44.Google Scholar

  • Baldaccini, N.E., Giunchi, D., Mongini, E. & Ragionieri, L. (2009) Foraging flights of wild rock doves (Columba l. livia): a spatio‐temporal analysis. Italian Journal of Zoology, 67(4), 371-377.Google Scholar

  • Barnes, E. (1972) The avian intestinal flora with particular reference to the possible ecological significance of the cecal anaerobic bacteria. American Journal of Clinical Nutrition, 25, 1475-1479.CrossrefGoogle Scholar

  • Bart, A., Wentink-Bonnema, E.M., Heddema, E.R., Buijs, J. & Tom, v.G. (2008) Frequent occurrence of human-associated microsporidia in fecal droppings of urban pigeons in Amsterdam, the Netherlands. Applied and Environmental Microbiology, 74(22), 7056-7058.CrossrefGoogle Scholar

  • Biedermann, T., Garlick, D., & Blaisdell, A.P. (2012) Food choice in the laboratory pigeon. Behavioural Processes, 91(1), 129-132.Google Scholar

  • Bridaham, D.O. (1971) Pigeons and Art [letter to the editor]. Art Journal, 31(2), 240.CrossrefGoogle Scholar

  • Brown, R.G.B. (1969) Seed selection by pigeons. Behaviour, 34, 115-131.CrossrefGoogle Scholar

  • Buchanan, K.L. & Murphy, J.W. (1998) What Makes Cryptococcus neoformans a Pathogen? Emerging Infectious Diseases, 4(1), 71-83.CrossrefGoogle Scholar

  • Buijs, J.A. & Van Wijnen, J.H. (2001) Survey of feral rock doves (Columba livia) in Amsterdam, a bird-human association. Urban Ecosystems, 5(4), 235-241.CrossrefGoogle Scholar

  • Burton, R. (1980) Acid and base excretion: Assessment and relationships to diet and urine composition. Comparative Biochemistry and Physiology Part A. Physiology & Behavior, 66(3), 371-375.CrossrefGoogle Scholar

  • Caicedo, L.D., Alvarez, M.I., Delgado, M. & Cárdenas, A. (1999) Cryptococcus neoformans in bird excreta in the City Zoo of Cali, Colombia. Mycopathologia, 147(3), 121-124.Google Scholar

  • Caicedo, L.D., Alvarez, M.I., Llanos, C.E. & Molina, D. (1996) Cryptococcus neoformans en excretas de palomas del perímetro urbano de Cali. Colombia Médica, 27(3-4), 106-109.Google Scholar

  • Caro, T.M. (2005) Antipredator defenses in birds and mammals: University of Chicago Press.Google Scholar

  • Cena, A., Dando, A. & Pistone, G. (1989) Su alcuni casidi salmonellossi nei piccioni torraioli della cittá di Torino. Nuovo Pogresso Veterinario, 44(8), 289-290.Google Scholar

  • Cermeño, J.R., Hernández, I., Cabello, I., Orellán, Y., Cermeño, J.J., Albornoz, R., . . . Godoy, G. (2006) Cryptococcus neoformans and Histoplasma capsulatum in dove’s (Columbia livia) excreta in Bolívar State, Venezuela. Revista Latinoameriana Microbiologia, 48(1), 6-9.Google Scholar

  • Cerri, D., Andreani, E., Salvi, G. & Perelli, G. (1989) Il piccione di cittá quale vettore di agenti patogeni per l’ uomo e gli animali. Atti Conv. Intern Inquinamento ambientale e populazioni animali, Pisa, 195-203.Google Scholar

  • Chandra, R.N.L. (1904) Tanning, and working leather in the province of Bengal. Calcutta: Bengal Secretariat press.Google Scholar

  • Channon, D. (2004) Feral pigeon excrement on heritage stonework. International Pest Control, 146(1), 24-27.Google Scholar

  • Ciminari, M.E., Moyano, G., Chediack, J.G. & Caviedes-Vidal, E. (2005) Feral pigeons in urban environments: dietary flexibility and enzymatic digestion? Revista chilena de historia natural, 78(2), 267-279.Google Scholar

  • Cook, A., Rushton, S., Allan, J. & Baxter, A. (2008) An evaluation of techniques to control problem bird species on landfill sites. Environ Manage, 41(6), 834-843.CrossrefGoogle Scholar

  • CountyClean. (2015, Feb 26) Biggest Pile of Pigeon Poo Discovered. 25 Tonnes of Pigeon Poo [Jun 29]. Retrieved from http://countycleanenvironmental.co.uk/biggest-pile-of-pigeon-poo-discovered/Google Scholar

  • Del Monte, M. & Sabbioni, C. (1986) Chemical and biological weathering of an historical building: Reggio Emilia Cathedral. Science of the Total Environment, 50(1), 165-182.CrossrefGoogle Scholar

  • Desmond, W. (1801) Directions for Tanning All Sorts of Hides and Skins: According to the New Process (4 ed. Vol. J. Hatchard): LondonGoogle Scholar

  • Dilks, P.J. (1975) The breeding of the feral pigeon (Columba livia) in Hawke’s Bay, New Zealand. Notornis, 22(4), 295-301.Google Scholar

  • Dobeic, M., Pintaric, S., Vlahovic, K. & Dove, A. (2011) Feral pigeon (Columba livia) population management in Ljubljana. Veterinarski Arhiv, 81(2), 285-298.Google Scholar

  • Doehne, E. & Price, C. (2010) Stone Conservation: An overview of current research (2nd ed.). Los Angeles: Getty Conservation Institute.Google Scholar

  • Doroudiani, S. & Omidian, H. (2010) Environmental, health and safety concerns of decorative mouldings made of expanded polystyrene in buildings. Building and Environment, 45(3), 647-654.Google Scholar

  • Duarte, J., Farfán, M.A., Vargas, J.M. & Real, R. (2011) Evaluation of wires as deterrents for preventing house martin nesting on buildings. International Journal of Pest Management, 57(2), 147-151.CrossrefGoogle Scholar

  • Dunmore, R. & Davis, D.E. (1963) Reproductive condition of feral pigeons in winter. The Auk, 80, 374.CrossrefGoogle Scholar

  • Dutta, P., Borah, M., Sarmah, R. & Gangil, R. (2013) Isolation of Salmonella Typhimurium from pigeons (Columba livia) in Greater Guwahati, its histopathological impact and antibiogram. Comparative Clinical Pathology, 22(1), 147-150.Google Scholar

  • El-Gohary, M. (2015) Effective roles of some deterioration agents affecting Edfu Royal Birth House “Mammisi”. International Journal of Conservation Science, 6(2), 349-368.Google Scholar

  • Elharchli, H., El Abed, S., Lachari, F. & Koraichi, S.I. (2012) Isolation and characterization of lipolytic yeasts derived from traditional tanneries of Fez Medina. Moroccan Journal of Biology, 12, N 8-9.Google Scholar

  • Ferman, L.M., Peter, H.U. & Montalti, D. (2010) A study of feral pigeon Columba livia var. in urban and suburban areas in the city of Jena, Germany. Arxius de Miscel·lànea Zoològica, 8, 1-8.Google Scholar

  • Fernandes, P. (2006) Applied microbiology and biotechnology in the conservation of stone cultural heritage materials. Applied Microbiology and Biotechnology, 73(2), 291-296.Google Scholar

  • Fisher, R.B. (1935a) Uric acid synthesis in pigeons. I. Biochemical Journal, 29(9), 2192-2197.CrossrefGoogle Scholar

  • Fisher, R.B. (1935b) Uric acid synthesis in pigeons. I. Biochemical Journal, 29(9), 2198-2207.CrossrefGoogle Scholar

  • Folk, R.L. (1970) Uric Acid: The Main Nitrogenous Excretory Product of Birds. Science, 170, 98-99.Google Scholar

  • Gansser, A. & Jettmar, J. (1920) Taschenbuch des Gerbers. Leipzig: B.F.Vogt.Google Scholar

  • García-Rowe, J. & Saiz-Jimenez, C. (1991) Lichens and bryophytes as agents of deterioration of building materials in Spanish cathedrals. International Biodeterioration, 28(1-4), 151-163.Google Scholar

  • Gavris, G. (2011) Current situation and problems of management of pest birds in the cities of Ukraine. Julius-Kühn-Archiv, 432, 128.Google Scholar

  • Geluso, K. & Hayes, J.P. (1999) Effects of dietary quality on basal metabolic rate and internal morphology of European starlings (Sturnus vulgaris). Physiological and Biochemical Zoology: Ecological and Evolutionary Approaches, 72, 189-197.Google Scholar

  • Giraldeau, L.A. & Lefebvre, L. (1985) Individual feeding preferences in feral groups of rock doves. Canadian Journal of Zoology, 63, 189-191.CrossrefGoogle Scholar

  • Giraldeau, L.A. & Lefebvre, L. (1987) Scrounging prevents cultural transmission of food-finding behaviour in pigeons. Animal Behaviour, 35, 387-394.Google Scholar

  • Goodwin, D. (1960) Comparative ecology of pigeons in inner London. British Birds, 53(5), 201-212.Google Scholar

  • Granville, J. (1973) Clinical features of the principal diseases of pigeons. Annales de Médecine Vétérinaire, 117(5), 289-324.Google Scholar

  • Grimme, C. (1931). Kompostdünger. In F. Honcamp (Ed.), Handbuch der Pflanzenernährung und Düngerlehre (Vol. 2 Düngemittel und Düngung, pp. 150-162). Berlin: Julius Springer.Google Scholar

  • Haag-Wackernagel, D. (1995) Regulation of the street pigeon in Basel. Wildlife Society Bulletin, 23, 256-260.Google Scholar

  • Haag-Wackernagel, D. (2003) Die Strassentaube. Geschichte-Probleme- Lösungen. Der Ornithologische Beobachter, 100, 33-57.Google Scholar

  • Haag-Wackernagel, D. (2005) Parasites from feral pigeons as a health hazard for humans Annals of applied biology, 147(2), 203-210.Google Scholar

  • Haag-Wackernagel, D. (2006) Gesundheitsgefährdungen durch die Straßentaube Columba livia. Amtstierärztlicher Dienst und Lebensmittelkontrolle, 13(4), 262-272.Google Scholar

  • Haag-Wackernagel, D. & Geigenfeind, I. (2008) Protecting buildings against feral pigeons. European Journal of Wildlife Research, 54(4), 715-721.CrossrefGoogle Scholar

  • Haag-Wackernagel, D. & Moch, H. (2004) Health hazards posed by feral pigeons. Journal of Infection, 48(4), 307-313.Google Scholar

  • Haag-Wackernagel, D. & Spiewak, R. (2004) Human infestation by pigeon fleas [Ceratophyllus columbae] from feral pigeons. Annals of Agricultural and Environmental Medicine, 11(2), 343-346.Google Scholar

  • Hakkinen, I., Jokinen, M. & Tast, J. (1973) The winter breeding of the feral pigeon Columba livia domestica at Tampere in 1972/1973. Ornis Fennica, 50, 83-88.Google Scholar

  • Halsema, W., Alberts, H., de Bruijne, J. & Lumeij, T. (1988) Collection and analysis of urine from racing pigeons (columba livia domestica). Avian Pathology, 17(1), 221-225.CrossrefGoogle Scholar

  • Harr, K. (2002) Clinical chemistry of companion avian species: a review. Veterinary Clinical Pathology, 31, 140-151.CrossrefGoogle Scholar

  • Hartz, A., Cuvelier, M., Nowosielski, K., Bonilla, T., Green, M., Esiobu, N., . . . Rogerson, A. (2008) Survival potential of Escherichia coli and Enterococci in subtropical beach sand: implications for water quality managers. Journal of Environmental Quality, 37(3), 898-905.Google Scholar

  • Hatt, J.M. (2002). Digesta kinetics in feral pigeons (Columha livia). Paper presented at the Proceedings of the Joint Nutrition Symposium., August 21-25, Antwerp, Belgium.Google Scholar

  • Heddema, E.R., ter Sluis, S., Buijs, J.A., Vandenbroucke-Grauls, C.M.J.E., van Wijnen, J.H. & Visser, C.E. (2006) Prevalence of Chlamydophila psittaci in Fecal Droppings from Feral Pigeons in Amsterdam, The Netherlands. Applied and Environmental Microbiology, 72(6), 4423-4425.Google Scholar

  • Heltai, M. (2013) Urban Wildlife: conflict or coexistence? Review on Agriculture and Rural Development, 2(1), 17-23.Google Scholar

  • Hempel, K. & Moncrieff, A. (1972). Summary of work on marble conservation at the Victoria and Albert Museum conservation department up to August 1971. Paper presented at the treatment of stone: proceedings of the meeting of the Joint Committee for the Conservation of Stone, Bologna, October 1-3, 1971.Google Scholar

  • Herpol, C. & van Grembergen, G. (1967) La signification du pH dans le tube distrif de Gallus domesticus. Annales de Biologie animale, Biochimie, Biophysique, 7(1), 33-38.CrossrefGoogle Scholar

  • Hetmański, T. (2004) Timing of Breeding in the Feral Pigeon Columba livia f. domestica in Słupsk (NW Poland). Acta Ornithologica, 39(2), 105-110.CrossrefGoogle Scholar

  • Hetmański, T. (2007) Dispersion Asymmetry within a Feral Pigeon Columba livia Population. Acta Ornithologica, 42(1), 23-31.CrossrefGoogle Scholar

  • Hetmanski, T. & Barkowska, M. (2007) Density and age of breeding pairs influence feral pigeon, Columba livia reproduction. Folia Zoologica, 56(1), 71-83.Google Scholar

  • Hetmański, T. & Barkowska, M. (2008) Breeding parameters and recruitment in Feral Pigeons Columba livia f. domestica. Acta Ornithologica, 43(2), 159-166.CrossrefGoogle Scholar

  • Hetmański, T., Bocheski, M., Tryjanowski, P. & Skórka, P. (2011) The effect of habitat and number of inhabitants on the population sizes of feral pigeons around towns in northern Poland. European Journal of Wildlife Research, 57(3), 421-428.CrossrefGoogle Scholar

  • Hetmański, T. & Wołk, E. (2005) The effect of environmental factors and nesting conditions on clutch overlap in the Feral Pigeon Columba Livia f. urbana (Gm.). Polish Journal of Ecology, 53(4), 523-534.Google Scholar

  • Holt, G.E. (1914) Morocco the Piquant: Or, Life in Sunset Land. London: W. Heineman.Google Scholar

  • Howard, M., Barrett, P. & Oldsbury, D. (1991) Pest birds: The role of building and design and maintenance. Structural survey, 10(1), 38-44.Google Scholar

  • Huang, C.P., & Lavenburg, G. (2011) Impacts of Bird Droppings and Deicing Salts on Highway Structures: Monitoring, Diagnosis, Prevention. Newark, Delaware: Delaware Center for Transportation.Google Scholar

  • Hubalek, Z. (1975) Distribution of Cryptococcus neoformans in a pigeon habitat. Folia Parasitologica, 22, 73-179.Google Scholar

  • Inman, A.J., Lefebvre, L. & Giraldeau, L.A. (1987) Individual diet differences in feral pigeons: evidence for resource partitioning. Animal Behaviour, 35(6), 1902-1903.CrossrefGoogle Scholar

  • Jarema, K., LeSage, M. & Poling, A. (1995) Schedule-induced defecation: A demonstration in pigeons exposed to fixed-time schedules of food delivery. Physiology & Behavior, 58(1), 195-198.Google Scholar

  • Jenni-Eiermann, S., Heynen, D. & Schaub, M. (2014) Effect of an ultrasonic device on the behaviour and the stress hormone corticosterone in feral pigeons. Journal of Pest Science, 87(2), 315-322.Google Scholar

  • Jerolmack, C. (2008) How pigeons became rats: The cultural-spatial logic of problem animals. Social Problems, 55(2), 72-94.Google Scholar

  • Jinks, W. E. & Yee, R. B. (1968) Factors that determine the growth of Cryptococcus neoformans in avian excreta. American Journal of Epidemiology, 88(3), 445-450.Google Scholar

  • Johnston, R.F. (1984) Reproductive ecology of the feral pigeon, Columba livia. Occasional papers of the Museum of Natural History, the University of Kansas, 114, 1-8.Google Scholar

  • Johnston, R.F. & Janiga, M. (1995) Feral pigeons. Oxford: Oxford University Press.Google Scholar

  • Jokimaki, J. & Suhonen, J. (1998) Distribution and habitat selection of wintering birds in urban environments. Landscape and Urban Planning, 39, 253-263.Google Scholar

  • Kalmar, I.D., Werquin, G. & Janssens, G.P.J. (2010) Mineral intake in African grey parrots (Psittacus e erithacus) fed a seed mixture or extruded pellets ad libitum, and its effects on excreta characteristics 8th Biennial symposium of the Comparative Nutrition Society (pp. 108-113): Comparative Nutrition Society.Google Scholar

  • Karasawa, Y. (1989) Ammonia production from uric acid, urea, and amino acids and its absorption from the ceca of the cockerel. Journal of Experimental Zoology, 3, 75-80.CrossrefGoogle Scholar

  • Kear, J. (1963) The agricultural importance of wild goose droppings. Wildfowl, 14(1), 72-77.Google Scholar

  • Kösters, J., Kaleta, E.F., Monreal, G. & Siegmann, O. (1991) Das Problem der Stadttauben. Deutsches Tierärzteblatt, 39(4), 272-276.Google Scholar

  • Lamb, M.J. (1981) The Hausa tanners of Northern Nigeria and the production of Sokoto tanned goatskins. The New Bookbinder, 1, 58-62.Google Scholar

  • Larson, D.W., Matthes, U. & Kelly, P.E. (1999) Cliff Ecology. Cambridge: Cambridge University Press.Google Scholar

  • Laurila, M., Hohtola, E., Saarela, S. & Rashotte, M.E. (2003) Adaptive timing of digestion and digestion-related thermogenesis in the pigeon. Physiology & Behavior, 78(3), 441-448.CrossrefGoogle Scholar

  • le Roux, P., Kok, O. & Butler, H. (2013) Breeding behaviour and breeding success of feral pigeons in the Bloemfontein urban area. Suid- Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie, 32(1), 1-5.Google Scholar

  • Leather Act, 5 Eliz I, cap 8 (1563).Google Scholar

  • Lefebvre, L. (1985) Stability of Flock Composition in Urban Pigeons. The Auk, 102(4), 886-888.Google Scholar

  • Lefebvre, L. & Giraldeau, L.A. (1984) Daily feeding site use of urban pigeons. Canadian Journal of Zoology, 62, 1425-1428.CrossrefGoogle Scholar

  • Leucci, G., Melica, D. & Quarta, G. (2013) The Foggia Cathedral: an in situ integrated geophysical and mechanical study on the wooden structures of the ceiling. Paper presented at the Built Heritage 2013. Monitoring Conservation Management., Milan 18-20 November 2013.Google Scholar

  • Lindeboom, H. (1984) The nitrogen pathway in a penguin rookery. Ecology and Society, 65(1), 269-277.Google Scholar

  • Little, R.M. (1994) Marked dietary differences between sympatric feral rock doves and rock pigeons. South African Journal of Zoology, 29(1), 33-25.CrossrefGoogle Scholar

  • Long, S. (1982) Acid-base balance and urinary acidification in birds. Comparative Biochemistry and Physiology, 71A, 519-526.Google Scholar

  • Lonsdale, K. & Sutor, D.J. (1971) Uric acid dihydrate in bird urine. Science, 1872, 958-959.CrossrefGoogle Scholar

  • Loudon, J.C. (1831) An Encyclopædia of Agriculture: Comprising the Theory and Practice of the Valuation, Transfer, Laying Out, Improvement, and Management of Landed Property; and the Cultivation and Economy of the Animal and Vegetable Productions of Agriculture, Including All the Latest Improvements; a General History of Agriculture in All Countries; and a Statistical View of Its Present State, with Suggestions for Its Future Progress in the British Isles. London: Longman, Rees, Orme, Brown, and Green.CrossrefGoogle Scholar

  • Lumeij, J. (1987) Plasma urea, creatinine and uric acid concentrations in response to dehydration in racing pigeons (Columba Livia Domestica). Avian Pathology, 16(3), 377-382.CrossrefGoogle Scholar

  • Macadam, W.I. (1888) Manures, natural and artificial. Journal of the Society of Chemical Industry, 7, 79-100.Google Scholar

  • Magnino, S., Haag-Wackernagel, D., Geigenfeind, I., Helmecke, S., Dovc, A., Prukner-Radovcic, E., . . . Kaleta, E.F. (2009) Chlamydial infections in feral pigeons in Europe: Review of data and focus on public health implications. Vet Microbiol, 135(1-2), 54-67.Google Scholar

  • Maniatis, G.C. (2011) Organization, Market Structure and Modus Operandi of the Guild-Organized Leather Manufacturing Industry in Tenth-Century Constantinople. Byzantinische Zeitschrift, 103(2), 639-677.Google Scholar

  • Mansfield, T. (1990) The cost of stone building soiling in Sydney. Clean Air: Journal of the Clean Air Society of Australia and New Zealand, 24(1), 31-33.Google Scholar

  • McNabb, F.M.A., McNabb, R.A. & Steeves, H.R. (1973) Renal mucoid materials in pigeons fed high and low protein diets. Auk, 90, 14-18.Google Scholar

  • McNabb, F.M.A. & Poulson, T.L. (1970) Uric acid excretion in pigeons, Columba livia. Comparative Biochemistry and Physiology, 33, 933-939.Google Scholar

  • Mead, G. (1989) Microbes of the avian cecum: types present and substrates utilized. J Exp Zool Suppl, 3, 48-54.Google Scholar

  • Mitchell, S. (2014) dos & don’ts. Pigeons. Pest Management Professional, 82(7), 64.Google Scholar

  • Moon, R.D. & Zeigler, H.P. (1979) Food preferences in the pigeon (Columba livia). Physiology & Behavior, 22(6), 1171-1182.CrossrefGoogle Scholar

  • Morand-Ferron, J., Lalande, E. & Giraldeau, L.A. (2009) Large scale input matching by urban feral pigeons (Columba livia). Ethology, 115(7), 707-712.Google Scholar

  • Moriarty, E. (2008) The Real Cost of Uncontrolled Bird Infestations. Occupational Health and Safety, 77(7), 71-74.Google Scholar

  • Murton, R., Coombs, C. & Thompson, J. (1972a) Ecological studies of the feral pigeon Columba livia var. II. Flock Behaviour and Social Organization. Journal of Applied Ecology, 9, 875-889.Google Scholar

  • Murton, R., Thearle, R. & Coombs, C. (1974) Ecological studies of the feral pigeon Columba livia var. III. Reproduction and Plumage Polymorphism. Journal of Applied Ecology, 11(3), 841-854.CrossrefGoogle Scholar

  • Murton, R., Thearle, R. & Thompson, J. (1972b) Ecological studies of the feral pigeon Columba livia var. I. Population, breeding biology and economic considerations. Journal of Applied Ecology, 9(3), 835-874.CrossrefGoogle Scholar

  • Murton, R. & Westwood, N. (1966) The foods of the Rock Dove and Feral Pigeon. Bird Study, 13(2), 130-146.CrossrefGoogle Scholar

  • Newark and Sherwood District Council. (2001) How to repair historic buildings. nº. NewarkGoogle Scholar

  • NIIR Board of Consultants & Engineers. (2011) Leather Processing & Tanning Technology Handbook. Dehli: NIIR Project Consultantancy Services.Google Scholar

  • Pike, M. (2016). An exploration of the effect of bird behaviour on heritage buildings. An Australian perspective. (BAppSci[Honours]), Charles Sturt University, Albury, NSW.Google Scholar

  • Pike, M., Spennemann, D.H.R. & Watson, M.J. (2016a) Bird impacts on heritage buildings. Australian practitioner’s perspectives. Journal of Cultural Heritage Management and Sustainable Development.Google Scholar

  • Pike, M., Spennemann, D.H.R. & Watson, M. J. (2016b) Building use by urban commensal avifauna in Melbourne CBD, Australia. Emu- Austral Ornithology.Google Scholar

  • Plowright, C.M.S., Church, D., Sogbein, O., Potvin, A. & Gagnon, L. (2004) Two Solitudes: The Behaviour of Pigeons in Competitive Feeding. Behaviour, 141(4), 407-424.Google Scholar

  • Plowright, C.M.S. & Redmond, D. (1996) The effect of competition on choice by pigeons: foraging rate, resource availability and learning. 38(3), 277-285.Google Scholar

  • Poulson, T.L. & McNabb, F.M.A. (1970) Uric Acid: The Main Nitrogenous Excretory Product of Birds. Science, 170, 98.Google Scholar

  • Prashad, D. & Edwards, N. (1973) Phosphate excretion in the laying fowl. Comparative Biochemistry and Physiology Part A: Physiology & Behavior, 46(1), 131-137.CrossrefGoogle Scholar

  • Przybylska, K., Haidt, A., Myczko, Ł., Ekner-Grzyb, A., Rosin, Z.M., Kwieciński, Z., Tryjanowski, P., Suchodolska, J., Takacs, V., Jankowiak, L., Tobolka, M., Wasielewski, O., Graclik, A, Krawc zyk, A.J., Kasprzak, A., Szwajkowski, P., Wylegala, P., Malecha, A.W., Mizera, T. & Skórka, P. (2012) Local and Landscape-Level Factors Affecting the Density and Distribution of the Feral Pigeon Columba livia var. domestica in an Urban Environment.Google Scholar

  • Ornithologica, 47(1), 37-45.Google Scholar

  • Rashotte, M.E., Phillips, D.L. & Henderson, R.P. (1997) Nocturnal digestion, cloacal excretion, and digestion-related thermogenesis in pigeons (Columba livia). Physiology & Behavior, 61(1), 83-92.Google Scholar

  • Riddell, C. (2011) Services & Maintenance: Solutions For Pest Birds. Today’s Facility Manager.Google Scholar

  • Riddle, G. (1971) The breeding season in a rural colony of Feral Pigeons. Scottish Birds, 6(6), 321-329.Google Scholar

  • Rose, E., Nagel, P. & Haag-Wackernagel, D. (2006) Spatio-temporal use of the urban habitat by feral pigeons. Journal of Behavioural Ecology and Sociobiology, 60, 242-254.CrossrefGoogle Scholar

  • Ryan, A.C. (2011) The distribution, density, and movements of feral pigeons Columba livia and their relationship with people. (Master of Science in Ecology and Biodiversity), Victoria University, Wellington (NZ).Google Scholar

  • Sacchi, R., Gentilli, A., Razzetti, E. & Barbieri, F. (2002) Effects of building features on density and flock distribution of feral pigeons Columba livia var. domestica in an urban environment. Canadian Journal of Zoology, 80, 48-54.CrossrefGoogle Scholar

  • Sachse, K., Kuehlewind, S., Ruettger, A., Schubert, E. & Rohde, G. (2012) More than classical Chlamydia psittaci in urban pigeons. Veterinary Microbiology, 157(3-4), 476-480.Google Scholar

  • Sales, J. & Janssens, G.P. (2003a) Methods to determine metabolizable energy and digestibility of feed ingredients in the domestic pigeon (Columba livia domestica). Poultry Science, 82(9), 1457-1461.Google Scholar

  • Sales, J. & Janssens, G.P. (2003b) Nutrition of the domestic pigeon (Columba livia domestica ). World’s Poultry Science Journal, 59(2), 221-232.Google Scholar

  • Savard, J.P.L. & Falls, J.B. (1981) Influence of habitat structure on the nesting height of birds in urban areas. Canadian Journal of Zoology, 59(6), 924-932.Google Scholar

  • Schulze, B. (1895) Der Landwirt, 51, 301.Google Scholar

  • Schuster, W., Röder, R., Theodor, H. & Vogel, C. (1989) Verwilderte Haustauben-ein hygienisches Problem mit zunehmender Bedeutung in der DDR. Zeitschrift für die gesamte Hygiene, 35, 514-518.Google Scholar

  • Seamans, T.W. & Blackwell, B.F. (2011) Electric shock strips as bird deterrents: does experience count? International Journal of Pest Management, 57(4), 357-362.CrossrefGoogle Scholar

  • Senar, J.C., Montalvo, T., Pascual, J. & Peracho, V. (2017) Reducing the availability of food to control feral pigeons: changes in population size and composition. Pest Management Science, 73(2), 313-317.Google Scholar

  • Shettleworth, S.J. (1987) Individual differences in choice of food items by pigeons. Behavioural Processes, 14(3), 305-318.CrossrefGoogle Scholar

  • Silva, A.M. & Medeiros, P.R. (2008) Pigeons (Columba livia) in an urban square: what can we learn from local people’s knowledge and perception? Gaia Scientia, 2(2), 37-40.Google Scholar

  • Singer, M.A. (2003) Do mammals, birds, reptiles and fish have similar nitrogen conserving systems? Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 134(4), 543-558.Google Scholar

  • Slater, A.J. (1998). Twenty-five years of managing birds associated with buildings. Paper presented at the Proceedings of the Eighteenth Vertebrate Pest ConferenceGoogle Scholar

  • Sol, D., Santos, D.M. & Cuadrado, M. (2000) Age-related feeding site selection in urban pigeons (Columba livia): experimental evidence of the competition hypothesis. Canadian Journal of Zoology, 78, 144-149.Google Scholar

  • Sol, D., Santos, D.M., García, J. & Cuadrado, M. (1998) Competition for food in urban pigeons: the cost of being juvenile. Condor, 100(298-304).Google Scholar

  • Sol, D. & Senar, J.C. (1992) Comparison between two censuses of feral pigeon Columba livia var. from Barcelona: an evaluation of seven years of control by killing. Butlletí del Grup Català d’Anellament, 9, 29-32.Google Scholar

  • Soldatini, C., Mainardi, D., Emilio Baldaccini, N. & Giunchi, D. (2006) A temporal analysis of the foraging flights of feral pigeons (Columba livia f. domestica) from three Italian cities. Italian Journal of Zoology, 73(1), 83-92.Google Scholar

  • Spennemann, D.H.R. (2017) Feeding the Pigeons. Documenting a Cosmopolitan Meme on Contemporary Postcards (Vol. 103). Albury: Institute for Land, Water and Society, Charles Sturt University.Google Scholar

  • Spennemann, D.H.R. & Look, D.W. (2006) Impact of Tropical Vegetation On World War II-Era cultural resources in the Marshall Islands. Micronesian Journal of the Humanities and Social Sciences, 5(1/2), 440-462.Google Scholar

  • Spennemann, D.H.R., Pike, M. & Watson, M.J. (2017) The acidity of pigeon excreta and its implications for heritage conservation. International Journal of Building Pathology and Adaptation, 35(1).Google Scholar

  • Spennemann, D.H.R. & Watson, M.J. (2016) Measured pH in the excreta of birds other than pigeons and chickens. Data Tables. Albury, NSW: Institute of Land Water and Society, Charles Sturt University.Google Scholar

  • Spennemann, D.H.R. & Watson, M.J. (2017a) The impact of bird excreta on the conservation of architectural metals. A review. APT Bulletin in press.Google Scholar

  • Spennemann, D.H.R. & Watson, M.J. (2017b) Of Old Wives Tales and Bird Droppings: A Systematic Review of the Evidence That Bird Droppings Damage Buildings. PLoS One.Google Scholar

  • Stevens, G.R., Clark, L. & Weber, R.A. (1998) The use of aerosol repellents as an avain deterrent strategy. Paper presented at the Eighteenth Vertebrate Pest Conference.Google Scholar

  • Stock, B. & Haag-Wackernagel, D. (2014) Effectiveness of gel repellents on feral pigeons. Animals, 4, 1-15.Google Scholar

  • Stringham, S.A., Mulroy, E.E., Xing, J., Record, D., Guernsey, M.W., Aldenhoven, J.T., . . . Shapiro, M. D. (2012) Divergence, convergence, and the ancestry of feral populations in the domestic rock pigeon. Current Biology, 22, 302-308.CrossrefGoogle Scholar

  • Sturkie, P.D. (1976). Kidneys, extrarenal salt excretion and urine. In P. D. Sturkie (Ed.), Avian Physiology (3 ed., pp. 263-285). New York: Springer.Google Scholar

  • Svihus, B., Choct, M. & Classen, H. (2013) Function and nutritional roles of the avian caeca: a review. World’s Poultry Science Journal, 69(2), 249-264.Google Scholar

  • Swan, J. (1821) Explanation of an improved mode of tanning laid down from practical results. London: John Swan.Google Scholar

  • Thompson, R. (1981) Leather manufacture in the post-medieval period with special reference to Northamptonshire. Post-Medieval Archaeology, 15(1), 161-175.CrossrefGoogle Scholar

  • Uribe, F., Colom, L., Camerino, M., Ruiz, J. & Senar, J.C. (1984) Censo de las palomas semidomésticas (Columba livia) de la ciudad de Barcelona. Miscel·lània Zoològica, 8(237-244).Google Scholar

  • Van der Veen, I.T. & Sivars, L.E. (2000) Causes and consequences of mass loss upon predator encounter: Feeding interruption, stress or fit-for-flight. Functional Ecology, 14(5), 638-644.Google Scholar

  • Vasiliu, A. & Buruiana, D. (2010) Are Birds a Menace to Outdoor Monuments? International Journal of Conservation Science, 1(2), 83-92.Google Scholar

  • Vatnick, J. & Foertsch, S. (1998) Incubation temperature of the pigeon embryo (Columba livia). Journal of Thermal Biology, 23, 53-57.Google Scholar

  • Wei, S., Jiang, Z., Liu, H., Zhou, D. & Sanchez-Silva, M. (2013) Microbiologically induced deterioration of concrete - A Review. Braziian Journala of Microbiology, 44(4), 1001-1007.Google Scholar

  • Yousif, A.M. & Mubarak, A.R. (2009) Variations in Nitrogen Mineralization from Different Manures in Semi-arid Tropics of Sudan with Reference to Salt-affected Soils. International Journal of Agriculture and Biology, 11, 515-520.Google Scholar

About the article

Published Online: 2017-05-03

Published in Print: 2017-03-28

Citation Information: European Journal of Ecology, Volume 3, Issue 1, Pages 27–41, ISSN (Online) 1339-8474, DOI: https://doi.org/10.1515/eje-2017-0004.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in