1.
Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotech 2008;3:423–8.CrossrefGoogle Scholar
2.
Shiohara A, Hoshino A, Hanaki K, Suzuki K, Yamamoto K. On the cyto-toxicity caused by quantum dots. Microbiol Immunol 2004;48:669–75.CrossrefGoogle Scholar
3.
Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 2008;83: 761–9.CrossrefGoogle Scholar
4.
Juliano RL. The future of nanomedicine: promises and limitations. Sci Public Policy 2012;39:99–104.CrossrefGoogle Scholar
5.
Priyanka P, Vandana P. The upcoming field of theranostic nanomedicine: an overview. J Biomed Nanotechnol 2012;8:859–82.Google Scholar
6.
Berezin M, Achilefu S. Fluorescence lifetime measurements and biological imaging. Chem Rev 2010;110:2641–84.CrossrefGoogle Scholar
7.
Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y. New strategies for flourescent probe design in medical diagmpstic imaging. Chem Rev 2011;110:2620–40.Google Scholar
8.
Louie A. Multimodality imaging probes: design and challenges. Chem Rev 2010;110:3146–95.CrossrefGoogle Scholar
9.
Rao J, Dragulescu-Andrasi A, Yao H. Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol 2007;18:17–25.CrossrefGoogle Scholar
10.
Lau JS, Lee P, Tsang KH, Ng CH, Lam Y, Cheng S, et al. Luminescent cyclometalated iridium (III) polypyridine indole properties, cytotoxicity, and cellular uptake. Chart 2009;48:708–18.Google Scholar
11.
Malkani N, Schmid JA. Some secrets of fluorescent proteins: distinct bleaching in various mouting fluids and photoactivation of cyan flourescent proteins at YFP-excitation. Nat Preceding 2011;6:e18586.Google Scholar
12.
Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 2005;4:435–46.CrossrefGoogle Scholar
13.
Wang C, Ma Q, Dou W, Kanwal S, Wang G, Yuan P, et al. Synthesis of aqueous CdTe quantum dots embedded silica nanoparticles and their applications as fluorescence probes. Talanta 2009;15:1358–64.CrossrefGoogle Scholar
14.
Yu M, Zhao Q, Shi L, Li F, Zhou Z, Yang H, et al. Cationic iridium(III) complexes for phosphorescence staining in the cytoplasm of living cells. Chem Commun 2008;14:2115–7.CrossrefGoogle Scholar
15.
Zhao Q, Yu M, Shi L, Liu S, Li C, Shi M, et al. Cationic iridium(III) complexes with tunable emission color as phosphorescent dyes for live cell imaging. Organometallics 2010;29:1085–91.CrossrefGoogle Scholar
16.
Janib SM, Moses AS, MacKay JA. Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliver Rev 2010;30:1052–63.CrossrefGoogle Scholar
17.
Chatterjee DK, Yong Z. Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells. Nanomedicine 2008;3:373–82.Google Scholar
18.
Abdul Jalil R, Zhang Y. Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals. Biomaterials 2008;29:4122–8.CrossrefGoogle Scholar
19.
Tsien RY. The green fluorescent protein. Ann Rev Biochem 1998;67:509–44.CrossrefGoogle Scholar
20.
Wang L, Li Y. Green upconversion nanocrystals for DNA detection. Chem Commun 2006;28:2557–9.CrossrefGoogle Scholar
21.
Xiong LQ, Chen ZG, Yu MX, Li FY, Liu C, Huang CH. Synthesis, characterization, and in vivo targeted imaging of amine-functionalized rare-earth up-converting nanophosphors. Biomaterials 2009;30:5592–600.CrossrefGoogle Scholar
22.
Xiong L, Yang T, Yang Y, Xu C, Li F. Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors. Biomaterials 2011;31:7078–85.Google Scholar
23.
Idris NM, Li Z, Ye L, Sim EK, Mahendran R, Ho PC-L, et al. Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles. Biomaterials 2009;30:5104–13.CrossrefGoogle Scholar
24.
Park YI, Kim JH, Lee KT, Jeon KS, Na HB, Yu JH, et al. Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent. Adv Mater 2009;26:4467–71.CrossrefGoogle Scholar
25.
Sudhagar S, Sathya S, Pandian K, Lakshmi BS. Targeting and sensing cancer cells with ZnO nanoprobes in vitro. Biotechnol Lett 2011;33:1891–6.CrossrefGoogle Scholar
26.
Chatterjee DK, Rufaihah AJ, Zhang Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials 2008;29:937–43.CrossrefGoogle Scholar
27.
Wu X, Zhang Q, Wang X, Yang H, Zhu Y. One-Pot synthesis of carboxyl-functionalized rare earth fluoride nanocrystals with monodispersity, ultrasmall size and very bright luminescence. Eur J Inorg Chem 2011;16:2158–63.CrossrefGoogle Scholar
28.
Boyer J, Cuccia LA, Capobianco JA. Synthesis of colloidal upconverting monodisperse nanocrystals. Nano Lett 2007;7:847–52.CrossrefGoogle Scholar
29.
Heer S, Kömpe K, Güdel H-U, Haase M. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv Mater 2004;17:2102–5.CrossrefGoogle Scholar
30.
Yi G, Chow G. Core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem Mater 2007;19:341–3.CrossrefGoogle Scholar
31.
Yezhelyev MV, Qi L, O’Regan RM, Nie S, Gao X. Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging. J Am Chem Soc 2008;16:9006–12.CrossrefGoogle Scholar
32.
Qi L, Gao X. Quantum dot-amphipol nanocomplex time imaging of siRNA. ACS Nano 2008;2:1403–10.CrossrefGoogle Scholar
33.
Derfus AM, Chen A, Min DH, Ruoslahti E, Bhatia SN. Targeted quantum dot conjugates for siRNA delivery. Bioconjug Chem 2007;18:1391–6.CrossrefGoogle Scholar
34.
Gao X, Yang L, Petros J, Marshall FF, Simons JW, Nie S. In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 2005;16:63–72.CrossrefGoogle Scholar
35.
Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996;271:933–6.CrossrefGoogle Scholar
36.
Aldana J, Wang Y, Peng X. Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J Am Chem Soc 2001;123:8844–50.CrossrefGoogle Scholar
37.
Yong KT, Qian J, Roy I, Lee HH, Bergey EJ, Tramposch KM, et al. Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells. Nanolett 2007;7:761–5.CrossrefGoogle Scholar
38.
Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002;298:1759–62.CrossrefGoogle Scholar
39.
Ho YP, Leong KW. Quantum dot-based theranostics. Nanoscale 2010;2:60–8.CrossrefGoogle Scholar
40.
Sajja HH, East MP, Mao H, Wang AY, Nie S, Yang L. Development of multifunctional nanoparticles for targeted drug delivery and non invasive imaging of therapeutic effect. Curr Drug Discov Technol 2009;6:43–51.CrossrefGoogle Scholar
41.
Nair A, Shen J, Thevenot P, Zou L, Cai T, Hu Z, et al. Enhanced intratumoral uptake of quantum dots concealed within hydrogel nanoparticles. Nanotechnology 2008;19:485102.CrossrefGoogle Scholar
42.
Schroeder JE, Shweky I, Shmeeda H, Banin U, Gabizon A. Folate-mediated tumor cell uptake of quantum dots entrapped in lipid nanoparticles. J Control Release 2007;4:28–34.CrossrefGoogle Scholar
43.
Diagaradjane P, Orenstein-Cardona JM, Colón-Casasnovas NE, Deorukhkar A, Shentu S, Kuno N, et al. Imaging epidermal growth factor receptor expression in vivo: pharmacokinetic and biodistribution characterization of a bioconjugated quantum dot nanoprobe. Clin Cancer Res 2008;14:731–41.CrossrefGoogle Scholar
44.
Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, et al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nanolett 2006;6:669–76.CrossrefGoogle Scholar
45.
Hu R, Yong KT, Roy I, Ding H, Law WC, Cai H, et al. Functionalized near-infrared quantum dots for in vivo tumor vasculature imaging. Nanotechnology 2010;21:145105.CrossrefGoogle Scholar
46.
Xing Y, Chaudry Q, Shen C, Kong KY, Zhau HE, Chung LW, et al. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat Protoc 2007;2:1152–65.CrossrefGoogle Scholar
47.
Yezhelyev MV, Al-Hajj A, Morris C, Marcus I, Liu T, Lewis M, et al. In situ molecular profiling of breast cancer biomarkers with multicolor quantum dots. Adv Mater 2007;17:3146–51.CrossrefGoogle Scholar
48.
Ghazani A, Lee J, Klostranec J, Xiang Q, Dacosta RS, Wilson BC, et al. High throughput quantification of protein expression of cancer antigens in tissue microarray using quantum dot nanocrystals. Nanolett 2006;6:2881–6.CrossrefGoogle Scholar
49.
Tholouli E, Hoyland J, Di Vizio D, O’Connell F, Macdermott S, Twomey D, et al. Imaging of multiple mRNA targets using quantum dot based in situ hybridization and spectral deconvolution in clinical biopsies. Biochem Biophys Res Commun 2006;22:628–36.CrossrefGoogle Scholar
50.
Byers RJ, Di Vizio D, O’connell F, Tholouli E, Levenson RM, Gossage K, et al. Semiautomated multiplexed quantum dot-based in situ hybridization and spectral deconvolution. J Mol Diagn 2007;9:20–9.CrossrefGoogle Scholar
51.
Reimer P, Tombach B. Abdominal radiology review article Hepatic MRI with SPIO: detection and characterization of focal liver lesions. Eur Radiol 1998;1204:1198–204.CrossrefGoogle Scholar
52.
Toma A, Otsuji E, Kuriu Y, Okamoto K, Ichikawa D, Hagiwara A, et al. Monoclonal antibody A7-superparamagnetic iron oxide as contrast agent of MR imaging of rectal carcinoma. Br J Cancer 2005;93:131–6.CrossrefGoogle Scholar
53.
Funovics M, Kapeller B, Hoeller C, Su HS, Kunstfeld R, Puig S, et al. MR imaging of the her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents. Magn Reson Imaging 2004;22:843–50.Google Scholar
54.
Chang S, Dai Y, Kang B, Han W, Mao L, Chen D. UV-enhanced cytotoxicity of thiol-capped CdTe quantum dots in human pancreatic carcinoma cells. Toxicology Letters 2009;188:104–11.CrossrefGoogle Scholar
55.
Sun C, Veiseh O, Gunn J, Fang C, Hansen S, Lee D, et al. In vivo MRI detection of gliomas by chlorotoxin-conjugated superparamagnetic nanoprobes. Small 2008;4:372–9.CrossrefGoogle Scholar
56.
Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski VR, et al. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 1992;52:3396–401.Google Scholar
57.
Lines C, Ross JF, Chaudhuri PK, Ratnam M. Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Cancer 1993;73:2432–43.Google Scholar
58.
Harisinghani MG, Weissleder R. Sensitive, noninvasive detection of lymph node metastases. PLoS Medicine 2004;1:e66.CrossrefGoogle Scholar
59.
Liu YL, Wu YH, Tsai WB, Tsai CC, Chen WS, Wu CS. Core-shell silica@chitosan nanoparticles and hollow chitosan nanospheres using silica nanoparticles as templates: preparation and ultrasound bubble application. Carbohydr Polym 2011;84:770–4.CrossrefGoogle Scholar
60.
Xie J, Jon S. Magnetic nanoparticle-based theranostics. Theranostics 2012;2:122–4.CrossrefGoogle Scholar
61.
Kang E, Min HS, Lee J, Han MH, Ahn HJ, Yoon IC, et al. Nanobubbles from gas-generating polymeric nanoparticles: ultrasound imaging of living subjects. Angew Chem Int Ed Engl 2010;49:524–8.CrossrefGoogle Scholar
62.
Ma H, Wang PC, Qian F, Liang XJ. Biological effects of nanomaterials and drugs measured by the small-animal SPECT/CT imaging system in vivo. Acta Bioph Sin 2010;16:691–701.Google Scholar
63.
Kircher MF, Mahmood U, King RS, Weissleder R, Josephson L. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation advances in brief. Cancer Res 2003;63:8122–5.Google Scholar
64.
Talanov VS, Regino CS, Kobayashi H, Bernardo M, Choyke PL, Brechbiel MW. Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging. Nanolett 2006;6:1459–63.CrossrefGoogle Scholar
65.
Jennings LE, Long NJ. “Two is better than one” – probes for dual-modality molecular imaging. Chem Commun 2009;12:3511–24.CrossrefGoogle Scholar
66.
Sun C, Yang H, Yuan Y, Tian X, Wang L, Guo Y, et al. Controlling assembly of paired gold clusters within apoferritin nanoreactor for in vivo kidney targeting and biomedical imaging. J Am Chem Soc 2011;133:8617–24.CrossrefGoogle Scholar
67.
Ruoslahti E, Bhatia SN, Sailor MJ. Targeting of drugs and nanoparticles to tumors. J Cell Biol 2010;188:759–68.CrossrefGoogle Scholar
68.
Bhaskar S, Tian F, Stoeger T, Kreyling W, De la Fuente JM, Grazú V, et al. Multifunctional nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging. Part Fibre Toxicol 2010;7:3.Google Scholar
69.
Torchilin VP. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J 2007;9:E128–47.CrossrefGoogle Scholar
70.
Sumer B, Gao J. Theranostic nanomedicine for cancer. Nanomedicine 2008;3:137–40.CrossrefGoogle Scholar
71.
Bae KH, Chung HJ, Park TG. Nanomaterials for cancer therapy and imaging. Mol Cells 2011;31:295–302.CrossrefGoogle Scholar
72.
De Rosa A, Naviglio D, Di Luccia A. Advances in photodynamic therapy of cancer. Curr Cancer Ther Rev 2011;7:234–47.CrossrefGoogle Scholar
73.
Olivo M, Bhuvaneswari R, Lucky SS, Dendukuri N, Soo-Ping Thong P. Targeted therapy of cancer using photodynamic therapy in combination with multi-faceted anti-tumor modalities. Pharmaceuticals 2010;3:1507–29.CrossrefGoogle Scholar
74.
Misra R, Acharya S, Sahoo SK. Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov Today 2010;15:842–50.CrossrefGoogle Scholar
75.
Konan YN, Gurny R, Allémann E. State of the art in the delivery of photosensitizers for photodynamic therapy. J Photochem Photobiol B 2002;66:89–106.CrossrefGoogle Scholar
76.
Mai H, Zhang Y. Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4: Yb, Er core and core/shell-structured nanocrystals. J Phys Chem C 2007;111:13721–9.CrossrefGoogle Scholar
77.
Auzel F. Upconversion and anti-Stokes processes with f and d ions in solids. Chem Rev 2009;104:139–73.Google Scholar
78.
Zijlmans HJ, Bonnet J, Burton J, Kardos K, Vail T, Niedbala RS, et al. Detection of cell and tissue surface antigens using up-converting phosphors: a new reporter technology. Anal Biochem 1999;267:30–6.CrossrefGoogle Scholar
79.
Cheng L, Yang K, Zhang S, Shao M, Lee S, Liu Z. Highly-sensitive multiplexed in vivo imaging using pegylated upconversion nanoparticles. Nano Res 2010;3:722–32.CrossrefGoogle Scholar
80.
Yu M, Li F, Chen Z, Hu H, Zhan C, Yang H, et al. Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors. Anal Chem 2009;81:930–5.CrossrefGoogle Scholar
81.
Wu S, Han G, Milliron DJ, Aloni S, Altoe V, Talapin DV, et al. Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc Natl Acad Sci USA 2009;106:10917–21.CrossrefGoogle Scholar
82.
Wang C, Tao H, Cheng L, Liu Z. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials 2011;32:6145–54.Google Scholar
83.
Bechet D, Couleaud P, Frochot C, Viriot M-L, Guillemin F, Barberi-Heyob M. Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends Biotechnol 2008;26:612–21.CrossrefGoogle Scholar
84.
Gamaleia NF, Shishko ED, Dolinsky GA, Shcherbakov AB, Usatenko AV, Kholin VV. Photodynamic activity of hematoporphyrin conjugates with gold nanoparticles: experiments in vitro. Exp Oncol 2010;32:44–7.Google Scholar
85.
Ma J, Chen J-Y, Idowu M, Nyokong T. Generation of singlet oxygen via the composites of water-soluble thiol-capped CdTe quantum dots-sulfonated aluminum phthalocyanines. J Phys Chem B 2008;112:4465–9.CrossrefGoogle Scholar
86.
Samia AC, Chen X, Burda C. Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc 2003;125:15736–7.CrossrefGoogle Scholar
87.
Chatterjee DK, Fong LS, Zhang Y. Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev 2008;60:1627–37.CrossrefGoogle Scholar
88.
Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 2004;209:171–6.CrossrefGoogle Scholar
89.
Liao X, Zhang X. Preparation, characterization and cytotoxicity of carbon nanotube-chitosan-phycocyanin complex. Nanotechnology 2012;23:035101.CrossrefGoogle Scholar
90.
Zhou F, Resasco DE, Chen WR, Xing D, Ou Z, Wu B. Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J Biomed Opt 2009;14:021009.CrossrefGoogle Scholar
91.
Gannon CJ, Cherukuri P, Yakobson BI, Cognet L, Kanzius JS, Kittrell C, et al. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 2007;110:2654–65.CrossrefGoogle Scholar
92.
Chakravarty P, Marches R, Zimmerman NS, Swafford AD, Bajaj P, Musselman IH, et al. Thermal ablation of tumor cells with carbon nanotubes. Proc Natl Acad Sci USA 2008;105:8697–702.CrossrefGoogle Scholar
93.
Prencipe G, Tabakman SM, Welsher K, Liu Z, Goodwin AP, Zhang L, et al. PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. J Am Chem Soc 2009;131:4783–7.CrossrefGoogle Scholar
94.
Ghosh S, Dutta S, Gomes E, Carroll D, D’Agostino R, Olson J, et al. Increased heating efficiency and selective thermal ablation of malignant tissue with DNA-encased multiwalled carbon nanotubes. ACS Nano 2009;3:2667–73.CrossrefGoogle Scholar
95.
Moon HK, Lee SH, Choi HC. In vivo near-infrared mediated tumor destruction by photothermal effect of. ACS Nano 2009;3:3707–13.CrossrefGoogle Scholar
96.
Liu X, Tao H, Yang K, Zhang S, Lee S-T, Liu Z. Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials 2011;32:144–51.CrossrefGoogle Scholar
97.
Kam NW, O’Connell M, Wisdom J, Dai H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 2005;102:11600–5.CrossrefGoogle Scholar
98.
Liu Z, Li X, Tabakman SM, Jiang K, Fan S, Dai H. Multiplexed multicolor Raman imaging of live cells with isotopically modified single walled carbon nanotubes. J Am Chem Soc 2008;130:13540–1.CrossrefGoogle Scholar
99.
Welsher K, Liu Z, Daranciang D, Dai H. Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nanolett 2008;8:586–90.CrossrefGoogle Scholar
100.
Yang K, Zhang S, Zhang G, Sun X, Lee S-T, Liu Z. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nanolett 2010;10:3318–23.CrossrefGoogle Scholar
101.
Chang SS, Lee CL, Wang CR. Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 1997;101:6661–4.Google Scholar
102.
Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 2003;100:13549–54.CrossrefGoogle Scholar
103.
Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2007;2:681–93.CrossrefGoogle Scholar
104.
Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, et al. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 2005;109:13857–70.CrossrefGoogle Scholar
105.
Nikoobakht B, El-Sayed M. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 2003;15:1957–62.CrossrefGoogle Scholar
106.
Oldenburg S, Averitt R, Westcott S, Halas N. Nanoengineering of optical resonances. Chem Phys Lett 1998;288:243–7.CrossrefGoogle Scholar
107.
Sun Y, Mayers BT, Xia Y. Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett 2002;2:481–5.CrossrefGoogle Scholar
108.
Huang X, El-Sayed M. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 2010;1:13–28.CrossrefGoogle Scholar
109.
Svaasand LO, Gomer CJ, Morinelli E. On the physical rationale of laser induced hyperthermia. Lasers Med Sci 1990;5:121–8.CrossrefGoogle Scholar
110.
Loo C, Lowery A, Halas N, West J, Drezek R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 2005;5:709–11.CrossrefGoogle Scholar
111.
Huang X, El-Sayed IH, Qian W, El-Sayed M. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 2006;128:2115–20.CrossrefGoogle Scholar
112.
Verma A, Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small 2010;6:12–21.CrossrefGoogle Scholar
113.
Jin S, Ma X, Ma H, Zheng K, Liu J, Hou S, et al. Surface chemistry-mediated penetration and gold nanorod thermotherapy in multicellular tumor spheroids. Nanoscale 2013;5:143–6.CrossrefGoogle Scholar
114.
Hergt R, Dutz S. Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys Condens Matter 2006;18:2919–34.CrossrefGoogle Scholar
115.
Jordan A, Scholz R, Wust P, Schirra H, Schiestel T, Schmidt H, et al. Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro. J Magn Mater 1999;194:185–96.CrossrefGoogle Scholar
116.
Liu X, Fan H, Yi J, Yang Y. Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents. J Mater Chem 2012;22:8235–44.Google Scholar
117.
Rosensweig R. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 2002;252:370–4.CrossrefGoogle Scholar
118.
Fortin J, Wilhelm C. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 2007;129:2628–35.CrossrefGoogle Scholar
119.
Ibrahim EM, Khavrus VO, Krupskaya Y, Hampel S, Leonhardt A, Bu B, et al. The synthesis of carbon coated Fe, Co and Ni nanoparticles and an examination of their magnetic properties. Carbon 2009;47:2821–8.Google Scholar
120.
Nanoscale C, Panissod P, Pichon BP, Pourroy G, Guillon D, Donnio B. Nanoscale Size-dependent properties of magnetic iron oxide nanocrystals. Nanoscale 2011;3:225–32.Google Scholar
121.
Khandhar AP, Ferguson RM, Krishnan KM. Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: implications in biological systems. J Appl Phys 2011;310:109.Google Scholar
122.
Ma M, Wu Y, Zhou J, Sun Y, Zhang Y, Gu N. Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field. J Magn Mater 2004;268:33–9.Google Scholar
123.
Tachibana K Jr, Feril LB, Ikeda-dantsuji Y. Sonodynamic therapy. Ultrasonics 2008;48:253–9.CrossrefGoogle Scholar
124.
Umemura S, Kawabata K, Sasaki K, Yumita N, Umemura K, Nishigaki R. Recent advances in sonodynamic approach to cancer therapy. Ultrason Sonochem 1996;3:S187–91.CrossrefGoogle Scholar
125.
Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 2008;60:1307–15.CrossrefGoogle Scholar
126.
Wang J, Guo Y, Liu B, Jin X, Liu L, Xu R, et al. Ultrasonics sonochemistry detection and analysis of reactive oxygen species (ROS) generated by nano-sized TiO2 powder under ultrasonic irradiation and application in sonocatalytic degradation of organic dyes. Ultrason Sonochem 2011;18:177–83.CrossrefGoogle Scholar
127.
Harada Y, Ogawa K, Irie Y, Endo H, Feril LB, Uemura T, et al. Ultrasound activation of TiO2 in melanoma tumors. J Clin Oncol 2011;149:190–5.Google Scholar
128.
Baust JG, Gage A. The molecular basis of cryosurgery. BJU Int 2005;95:1187–91.CrossrefGoogle Scholar
129.
Rubinsky B, Onik G. Cryosurgery: advances in the application of low temperatures to medicine. Int J Refrig 1991;14:190–9.CrossrefGoogle Scholar
130.
Rubinsky B. Cryosurgery. Annu Rev Biomed Eng 2000;2:157–87.CrossrefGoogle Scholar
131.
Izawa BJ, Madsen LT, Scott SM, Tran J, Mcguire EJ, Eschenbach AC Von, et al. Salvage cryotherapy for recurrent prostate cancer after radiotherapy: variables affecting patient outcome. J Clin Oncol 2002;20:2664–71.CrossrefGoogle Scholar
132.
Seifert JK, Springer A, Baier P, Junginger T. Liver resection or cryotherapy for colorectal liver metastases a prospective case control study. Int J Colorectal Dis 2005;20:507–20.CrossrefGoogle Scholar
133.
Yan JF, Liu J. Nanocryosurgery and its mechanisms for enhancing freezing efficiency of tumor tissues. Nanomedicine 2008;4:79–87.Google Scholar
134.
Di DR, He ZZ, Sun ZQ, Liu J. A new nano-cryosurgical modality for tumor treatment using biodegradable MgO nanoparticles. Nanomedicine 2012;8:1233–41.Google Scholar
135.
Chen C, Xing G, Wang J, Zhao Y, Li B, Tang J, et al. Multihydroxylated [Gd@C82(OH)22]n nanoparticles: antineoplastic activity of high efficiency and low toxicity. Nano Lett 2005;5:2050–7.CrossrefGoogle Scholar
136.
Meng H, Xing G, Sun B, Zhao F, Lei H, Li W, et al. Potent angiogenesis inhibition by the particulate form of fullerene derivatives. ACS Nano 2010;4:2773–83.CrossrefGoogle Scholar
137.
Meng J, Xing J, Wang Y, Lu J, Zhao Y, Gao X, et al. Epigenetic modulation of human breast cancer by metallofullerenol nanoparticles: in vivo treatment and in vitro analysis. Nanoscale 2011;3:4713–9.CrossrefGoogle Scholar
138.
Meng J, Xing J, Ma X, Cao W, Lu J, Wang Y. Metallofullerol nanoparticles with low toxicity inhibit tumor growth by induction of a G0/G1 arrest. Nanomedicine 2013;8:203–13.CrossrefGoogle Scholar
139.
Yin JJ, Lao F, Fu PP, Wamer WG, Zhao Y, Wang PC, et al. The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials. Biomaterials 2009;30:611–21.CrossrefGoogle Scholar
140.
Liang XJ, Meng H, Wang Y, He H, Meng J, Lu J, et al. Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis. Proc Natl Acad Sci USA 2010;107:7449–54.CrossrefGoogle Scholar
141.
De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 2008;3:133–49.CrossrefGoogle Scholar
142.
Suri SS, Fenniri H, Singh B. Nanotechnology-based drug delivery systems. J Occup Med Toxicol 2007;2:16.CrossrefGoogle Scholar
143.
Sledge G, Miller K. Exploiting the hallmarks of cancer: the future conquest of breast cancer. Eur J Cancer 2003;39:1668–75.CrossrefGoogle Scholar
144.
Van Vlerken LE, Vyas TK, Amiji MM. Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm Res 2007;24:1405–14.CrossrefGoogle Scholar
145.
Barreto JA, O’Malley W, Kubeil M, Graham B, Stephan H, Spiccia L. Nanomaterials: applications in cancer imaging and therapy. Adv Mater 2011;23:H18–40.Google Scholar
146.
Abdollahi A, Folkman J. Evading tumor evasion: current concepts and perspectives of anti-angiogenic cancer therapy. Drug Resist Updat 2010;13:16–28.CrossrefGoogle Scholar
147.
Desai N, Trieu V, Yao Z, Louie L, Ci S, Yang A, et al. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res 2006;12:1317–24.Google Scholar
148.
Lu W, Qi X, Zhang Q, Li R, Wang G, Zhang R. A pegylated liposomal platform: pharmacokinetics, pharmacodynamics, and toxicity in mice using doxorubicin as a model drug. J Pharmacol Sci 2004;389:381–9.CrossrefGoogle Scholar
149.
Miele E, Spinelli GP, Miele E, Tomao F, Tomao S. Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int J Nanomed 2009;4:99–105.Google Scholar
150.
Park JW. Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res 2002;4:95–9.CrossrefGoogle Scholar
151.
Bae YH. Drug targeting and tumor heterogeneity. J Control Release 2009;133:2–3.CrossrefGoogle Scholar
152.
Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 1998;95:4607–12.CrossrefGoogle Scholar
153.
Kumar A, Ma H, Zhang X, Huang K, Jin S, Liu J, et al. Gold nanoparticles functionalized with therapeutic and targeted peptides for cancer treatment. Biomaterials 2012;33:1180–9.CrossrefGoogle Scholar
154.
Yu MK, Park J, Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2012;2:3–44.CrossrefGoogle Scholar
155.
Sarris AH, Hagemeister F, Romaguera J, Rodriguez MA, Mclaughlin P, Tsimberidou AM, et al. Liposomal vincristine in relapsed non-Hodgkin’s lymphomas: early results of an ongoing phase II trial. Ann Oncol 2000;11:69–72.CrossrefGoogle Scholar
156.
Di Costanzo F, Gasperoni S, Rotella V, Di Costanzo F. Targeted delivery of albumin bound paclitaxel in the treatment of advanced breast cancer. Onco Targets Ther 2009;2:179–88.CrossrefGoogle Scholar
157.
Lim WT, Tan EH, Toh CK, Hee SW, Leong SS, Ang PC, et al. Phase I pharmacokinetic study of a weekly liposomal paclitaxel formulation (Genexol-PM) in patients with solid tumors. Ann Oncol 2010;21:382–8.CrossrefGoogle Scholar
158.
Davis ME. The first targeted delivery of siRNA in humans via a nanoparticle: from concept to clinic. Mol Pharm 2009;6: 659–68.CrossrefGoogle Scholar
159.
Sankhala K, Mita A, Adinin R, Wood L, Beeram M, Yamagata SB, et al. A phase I, pharmacokinetic (PK) study of MBP-426, a novel liposome encapsulated oxaliplatin. J Clin Oncol 2009;27:S2535.Google Scholar
160.
Davis M. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm 2009;6:659–98.CrossrefGoogle Scholar
161.
Slowing II, Vivero-Escoto JL, Wu C-W, Lin VS-Y. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 2008;60: 1278–88.CrossrefGoogle Scholar
162.
Lai CY, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S, et al. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc 2003;125:4451–9.CrossrefGoogle Scholar
163.
Park C, Kim H, Kim S, Kim C. Enzyme responsive nanocontainers with cyclodextrin gatekeepers and synergistic effects in release of guests. J Am Chem Soc 2009;131:16614–5.CrossrefGoogle Scholar
164.
Park C, Oh K, Lee SC, Kim C. Controlled release of guest molecules from mesoporous silica particles based on a pH-responsive polypseudorotaxane motif. Angew Chem Int Ed Engl 2007;46:1455–67.CrossrefGoogle Scholar
165.
Aznar E, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Amorós P, et al. pH- and Photo-switched release of guest molecules from mesoporous silica supports. J Am Chem Soc 2009;131:6833–43.CrossrefGoogle Scholar
166.
Hernandez R, Tseng H-R, Wong JW, Stoddart JF, Zink JI. An operational supramolecular nanovalve. J Am Chem Soc 2004;126:3370–1.CrossrefGoogle Scholar
167.
Leung KC, Nguyen TD, Stoddart JF, Zink JI. Supramolecular nanovalves controlled by proton abstraction and competitive binding. Chem Mater 2006;18:5919–28.CrossrefGoogle Scholar
168.
Radu DR, Lai C, Jeftinija K, Rowe EW, Jeftinija S, Lin VS. A Polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. J Am Chem Soc 2004;126:13216–7.CrossrefGoogle Scholar
169.
Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 2012;24:1504–34.CrossrefGoogle Scholar
170.
Hu X, Hao X, Wu Y, Zhang J, Zhang X, Wang PC, et al. Multifunctional hybrid silica nanoparticles for controlled doxorubicin loading and release with thermal and pH dually response. J Mater Chem B 2013;1:1109–18.CrossrefGoogle Scholar
171.
Persidis A. Cancer multidrug resistance. Nat Biotechnol 1999;17:94–5.CrossrefGoogle Scholar
172.
Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med 2002;53:615–27.CrossrefGoogle Scholar
173.
Peer D, Margalit R. Fluoxetine and reversal of multidrug resistance. Cancer Lett 2006;237:180–7.CrossrefGoogle Scholar
174.
Iversen T-G, Skotland T, Sandvig K. Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today 2011;6:176–85.CrossrefGoogle Scholar
175.
Shapira A, Livney YD, Broxterman HJ, Assaraf YG. Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance. Drug Resist Updat 2011;14:150–63.CrossrefGoogle Scholar
176.
Danson S, Ferry D, Alakhov V, Margison J, Kerr D, Jowle D, et al. Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. Br J Cancer 2004;90:2085–91.Google Scholar
177.
Wong HL, Rauth AM, Bendayan R, Manias JL, Ramaswamy M, Liu Z, et al. A new polymer-lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharm Res 2006;23:1574–85.CrossrefGoogle Scholar
178.
Garcion E, Lamprecht A, Heurtault B, Paillard A, Aubert-Pouessel A, Denizot B, et al. A new generation of anticancer, drug-loaded, colloidal vectors reverses multidrug resistance in glioma and reduces tumor progression in rats. Mol Cancer Ther 2006;5:1710–22.CrossrefGoogle Scholar
179.
Lee ES, Na K, Bae YH. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J Control Release 2005;103:405–18.CrossrefGoogle Scholar
180.
Meng H, Liong M, Xia T, Li Z, Ji Z, Zink JI, et al. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano 2010;4:4539–50.CrossrefGoogle Scholar
181.
Adams JM, Cory S. The Bcl-2-regulated apoptosis switch: mechanism and therapeutic potential. Curr Opin Immunol 2009;19:488–96.Google Scholar
182.
AlexM C, Min Z, Dongguang W, Dirk S, Oleh T. Co-delivery of Doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug resistant cancer cells. Small 2009;5:2673–7.Google Scholar
183.
Chen S, Zhao D, Li F, Zhuo R-X, Cheng S-X. Co-delivery of genes and drugs with nanostructured calcium carbonate for cancer therapy. RSC Adv 2012;2:1820–6.CrossrefGoogle Scholar
184.
Kim K, Kim JH, Park H, Kim Y-S, Park K, Nam H, et al. Tumor-homing multifunctional nanoparticles for cancer theragnosis: simultaneous diagnosis, drug delivery, and therapeutic monitoring. J Control Release 2010;146:219–27.CrossrefGoogle Scholar
185.
Yang J, Lee C-H, Ko H-J, Suh J-S, Yoon H-G, Lee K, et al. Multifunctional magneto-polymeric nanohybrids for targeted detection and synergistic therapeutic effects on breast cancer. Angew Chem Int Ed Engl 2007;46:8836–9.CrossrefGoogle Scholar
186.
Medarova Z, Pham W, Farrar C, Petkova V, Moore A. In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 2007;13:372–7.CrossrefGoogle Scholar
187.
Guo S, Qiao Y, Wang W, He H, Deng L, Xing J, et al. Poly(ε-caprolactone)-graft-poly(2-(N, N-dimethylamino) ethyl methacrylate) nanoparticles: pH dependent thermo-sensitive multifunctional carriers for gene and drug delivery. J Mater Chem 2010;20:6935–41.CrossrefGoogle Scholar
188.
Taton TA. Boning up on biology. Nature 2001;412:491–2.CrossrefGoogle Scholar
189.
Kong L, Gao Y, Cao W, Gong Y, Zhao N, Zhang X. Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds. J Biomed Mater Res A 2005;75:275–82.CrossrefGoogle Scholar
190.
Zandi M, Mirzadeh H, Mayer C, Urch H, Eslaminejad MB, Bagheri F, et al. Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells. J Biomed Mater Res A 2010;92:1244–55.Google Scholar
191.
Liao SS, Cui FZ, Zhang W, Feng QL. Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite. J Biomed Mater Res B 2004;69:158–65.CrossrefGoogle Scholar
192.
Zhao Y, Chen J, Chou AH, Li G, LeGeros RZ. Nonwoven silk fibroin net/nano-hydroxyapatite scaffold: preparation and characterization. J Biomed Mater Res A 2009;91:1140–9.CrossrefGoogle Scholar
193.
Oh S, Daraio C, Chen L, Pisanic TR, Fin RR, Jin S. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J Biomed Mater Res A 2006;78:97–103.Google Scholar
194.
Liu H, Slamovich EB, Webster TJ. Increased osteoblast functions among nanophase titania/poly (lactide-co-glycolide) composites of the highest nanometer surface roughness. J Biomed Mater Res A 2006;78:798–807.CrossrefGoogle Scholar
195.
Li Z, Qu Y, Yang B, Zhang B, Kim H-M, Zhao H, et al. Effects of hydroxyapatite additive content on the bioactivity and biomechanical compatibility of bioactive nano-titania ceramics. J Biomed Mater Res A 2008;86:333–8.CrossrefGoogle Scholar
196.
Wang Y, Shi X, Ren L, Yao Y, Zhang F, Wang DA. Poly(lactide-co-glycolide)/titania composite microsphere-sintered scaffolds for bone tissue engineering applications. J Biomed Mater Res B 2010;93:84–92.Google Scholar
197.
Yi C, Liu D, Fong CC, Zhang J, Yang M. Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway. ACS Nano 2010;4:6439–48.Google Scholar
198.
Wimpenny I, Ashammakhi N, Yang Y. Chondrogenic potential of electrospun nanofibres for cartilage tissue engineering. J Tissue Eng Regen Med 2012;6:536–49.CrossrefGoogle Scholar
199.
Kon E, Delcogliano M, Filardo G, Altadonna G, Marcacci M. Novel nano-composite multi-layered biomaterial for the treatment of multifocal degenerative cartilage lesions. Knee Surg Sports Traumatol Arthrosc 2009;17:1312–5.CrossrefGoogle Scholar
200.
Kijeńska E, Prabhakaran MP, Swieszkowski W, Kurzydlowski KJ, Ramakrishna S. Electrospun bio-composite P(LLA-CL)/collagen I/collagen III scaffolds for nerve tissue engineering. J Biomed Mater Res B 2012;100:1093–102.CrossrefGoogle Scholar
201.
Oh SH, Lee JH. Fabrication and characterization of hydrophilized porous PLGA nerve guide conduits by a modified immersion precipitation method. J Biomed Mater Res A 2007;80:530–8.CrossrefGoogle Scholar
202.
Wang W, Itoh S, Matsuda A, Aizawa T, Demura M, Ichinose S, et al. Enhanced nerve regeneration through a bilayered chitosan tube: the effect of introduction of glycine spacer into the CYIGSR sequence. J Biomed Mater Res A 2008;85:919–28.CrossrefGoogle Scholar
203.
Wang W, Itoh S, Matsuda A, Ichinose S, Shinomiya K, Hata Y, et al. Influences of mechanical properties and permeability on chitosan nano/microfiber mesh tubes as a scaffold for nerve regeneration. J Biomed Mater Res A 2008;84:557–66.CrossrefGoogle Scholar
204.
Wang W, Itoh S, Konno K, Kikkawa T, Ichinose S, Sakai K, et al. Effects of Schwann cell alignment along the oriented electrospun chitosan nanofibers on nerve regeneration. J Biomed Mater Res A 2009;91:994–1005.CrossrefGoogle Scholar
205.
Alpaslan E, Ercan B, Webster TJ. Anodized 20 nm diameter nanotubular titanium for improved bladder stent applications. Int J Nanomedicine 2011;6:219–25.Google Scholar
206.
Miralles P, Church TL, Harris AT. Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 2012;46:9224–39.CrossrefGoogle Scholar
Comments (0)