1.
Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 2012;32:1959–72.Google Scholar
2.
Johanson C, Stopa E, McMillan P. The Blood–Cerebrospinal Fluid Barrier: Structure and Functional Significance. In: Nag S, editor. The Blood-Brain and Other Neural Barriers. Methods in Molecular Biology. vol. 686. New York: Humana Press; 2011. p. 101–31.Google Scholar
3.
Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiol Dis 2010;37:13–25.CrossrefPubMedGoogle Scholar
4.
Hawkins BT, Egleton RD. Pathophysiology of the Blood–Brain Barrier: Animal Models and Methods. In: Gerald PS, editor. Current Topics in Developmental Biology. Vol. 80. London: Academic Press; 2007. p. 277–309.Google Scholar
5.
Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 2006;7:41–53.CrossrefPubMedGoogle Scholar
6.
Dohgu S, Takata F, Yamauchi A, Nakagawa S, Egawa T, Naito M, et al. Brain pericytes contribute to the induction and up-regulation of blood–brain barrier functions through transforming growth factor-β production. Brain Res 2005;1038:208–15.Google Scholar
7.
Begley D, Brightman M. Structural and functional aspects of the blood-brain barrier. In: Prokai L, Prokai-Tatrai K, editors. Peptide Transport and Delivery into the Central Nervous System. Progress in Drug Research. vol. 61. Basel: Birkhäuser Verlag; 2003. p. 39–78.Google Scholar
8.
Wolburg H, Lippoldt A. Tight junctions of the blood–brain barrier: development, composition and regulation. Vascul Pharmacol 2002;38:323–37.CrossrefPubMedGoogle Scholar
9.
Chiba H, Osanai M, Murata M, Kojima T, Sawada N. Transmembrane proteins of tight junctions. BBA-Biomembranes 2008;1778:588–600.Google Scholar
10.
Matter K, Balda MS. Signalling to and from tight junctions. Nat Rev Mol Cell Biol 2003;4:225–37.CrossrefGoogle Scholar
11.
Simard M, Arcuino G, Takano T, Liu QS, Nedergaard M. Signaling at the gliovascular interface. J Neurosci 2003;23:9254–62.Google Scholar
12.
Bernacki J, Dobrowolska A, Nierwinska K, Malecki A. Physiology and pharmacological role of the blood-brain barrier. Pharmacol rep 2008;60:600–22.Google Scholar
13.
Clark DE. In silico prediction of blood–brain barrier permeation. Drug Discov Today 2003;8:927–33.CrossrefGoogle Scholar
14.
Reiber H. Dynamics of brain-derived proteins in cerebrospinal fluid. Clin Chimica Acta 2001;310:173–86.CrossrefGoogle Scholar
15.
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001;46:3–26.CrossrefPubMedGoogle Scholar
16.
Deeken JF, Löscher W. The Blood-Brain Barrier and Cancer: Transporters, Treatment, and Trojan Horses. Clin Cancer Res 2007;13:1663–74.CrossrefGoogle Scholar
17.
Loscher W, Potschka H. Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci 2005;6:591–602.CrossrefGoogle Scholar
18.
Ohtsuki S, Terasaki T. Contribution of carrier-mediated transport systems to the blood–brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharm Res 2007;24:1745–58.CrossrefGoogle Scholar
19.
Simionescu M, Gafencu A, Antohe F. Transcytosis of plasma macromolecules in endothelial cells: a cell biological survey. Microsc Res Tech 2002;57:269–88.CrossrefGoogle Scholar
20.
Chen Y, Liu L. Modern methods for delivery of drugs across the blood–brain barrier. Adv Drug Deliv Rev 2012;64:640–65.CrossrefGoogle Scholar
21.
Pardridge WM. Blood-brain barrier drug targeting: the future of brain drug development. Mol Interventions 2003;3: 90–105, 51.CrossrefGoogle Scholar
22.
Wong HL, Wu XY, Bendayan R. Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev 2012;64:686–700.CrossrefGoogle Scholar
23.
Yang H. Nanoparticle-mediated brain-specific drug delivery, imaging, and diagnosis. Pharm Res 2010;27:1759–71.CrossrefGoogle Scholar
24.
Wong HL, Bendayan R, Rauth AM, Li Y, Wu XY. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev 2007;59:491–504.CrossrefGoogle Scholar
25.
Bendayan R, Lee G, Bendayan M. Functional expression and localization of P-glycoprotein at the blood brain barrier. Microsc Res Tech 2002;57:365–80.CrossrefGoogle Scholar
26.
Pardridge WM. Re-Engineering Biopharmaceuticals for delivery to brain with molecular Trojan horses. Bioconjugate Chem 2008;19:1327–38.CrossrefGoogle Scholar
27.
Hoshi Y, Uchida Y, Tachikawa M, Inoue T, Ohtsuki S, Terasaki T. Quantitative atlas of blood–brain barrier transporters, receptors, and tight junction proteins in rats and common marmoset. J Pharm Sci 2013;102:3343–55.CrossrefGoogle Scholar
28.
Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, et al. Quantitative targeted absolute proteomics of human blood–brain barrier transporters and receptors. J Neurochem 2011;117:333–45.CrossrefGoogle Scholar
29.
William MP. Drug transport across the blood–brain barrier. J Cereb Blood Flow Metab 2012;32:1959–72.Google Scholar
30.
Rautio J, Gynther M, Laine K. LAT1-mediated prodrug uptake: a way to breach the blood–brain barrier? Ther Deliv 2013;4:281–4.Google Scholar
31.
Li X, Qu B, Jin X, Hai L, Wu Y. Design, synthesis and biological evaluation for docetaxel-loaded brain targeting liposome with “lock-in” function. J Drug Target 2013.Google Scholar
32.
Hervé F, Ghinea N, Scherrmann J-M. CNS delivery via adsorptive transcytosis. AAPS J 2008;10:455–72.CrossrefGoogle Scholar
33.
Lu W, Wan J, She Z, Jiang X. Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle. J Control Release 2007;118:38–53.CrossrefGoogle Scholar
34.
Jones A, Shusta E. Blood–brain barrier transport of therapeutics via receptor-mediation. Pharm Res 2007;24:1759–71.CrossrefGoogle Scholar
35.
Okamoto CT. Endocytosis and transcytosis. Adv Drug Deliv Rev 1998;29:215–28.CrossrefGoogle Scholar
36.
Michaelis K, Hoffmann MM, Dreis S, Herbert E, Alyautdin RN, Michaelis M, et al. Covalent linkage of apolipoprotein E to albumin nanoparticles strongly enhances drug transport into the brain. J Pharm Exp Ther 2006;317:1246–53.CrossrefGoogle Scholar
37.
Ulbrich K, Hekmatara T, Herbert E, Kreuter J. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood–brain barrier (BBB). Eur J Pharm Biopharm 2009;71:251–6.CrossrefGoogle Scholar
38.
Ambruosi A, Khalansky AS, Yamamoto H, Gelperina SE, Begley DJ, Kreuter J. Biodistribution of polysorbate 80-coated doxorubicin-loaded [14C]-poly(butyl cyanoacrylate) nanoparticles after intravenous administration to glioblastoma-bearing rats. J Drug Target 2006;14:97–105.Google Scholar
39.
Kreuter J, Shamenkov D, Petrov V, Ramge P, Cychutek K, Koch-Brandt C, et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target 2002;10:317–25.CrossrefGoogle Scholar
40.
Kreuter J, Hekmatara T, Dreis S, Vogel T, Gelperina S, Langer K. Covalent attachment of apolipoprotein A-I and apolipoprotein B-100 to albumin nanoparticles enables drug transport into the brain. J Control Release 2007;118:54–8.Google Scholar
41.
Alyautdin RN, Petrov VE, Langer K, Berthold A, Kharkevich DA, Kreuter J. Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm Res 1997;14:325–8.CrossrefGoogle Scholar
42.
Kreuter J, Ramge P, Petrov V, Hamm S, Gelperina SE, Engelhardt B, et al. Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res 2003;20:409–16.CrossrefGoogle Scholar
43.
Woodcock DM, Linsenmeyer ME, Chojnowski G, Kriegler AB, Nink V, Webster LK, et al. Reversal of multidrug resistance by surfactants. Br J Cancer 1992;66:62–8.CrossrefGoogle Scholar
44.
Nerurkar MM, Burton PS, Borchardt RT. The use of surfactants to enhance the permeability of peptides through Caco-2 cells by inhibition of an apically polarized efflux system. Pharm Res 1996;13:528–34.CrossrefGoogle Scholar
45.
Pinzon-Daza M, Garzon R, Couraud P, Romero I, Weksler B, Ghigo D, et al. The association of statins plus LDL receptor-targeted liposome-encapsulated doxorubicin increases in vitro drug delivery across blood-brain barrier cells. Br J Pharmacol 2012;167:1431–47.Google Scholar
46.
Ueno M, Nakagawa T, Wu B, Onodera M, Huang CL, Kusaka T, et al. Transporters in the brain endothelial barrier. Curr Med Chem 2010;17:1125–38.CrossrefGoogle Scholar
47.
Wang D, El-Amouri SS, Dai M, Kuan CY, Hui DY, Brady RO, et al. Engineering a lysosomal enzyme with a derivative of receptor-binding domain of apoE enables delivery across the blood-brain barrier. Proc Natl Acad Sci USA 2013;110:2999–3004.CrossrefGoogle Scholar
48.
Bu G. Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nat Rev Neurosci 2009;10:333–44.CrossrefGoogle Scholar
49.
Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 2011;12:723–38.Google Scholar
50.
Nazer B, Hong S, Selkoe DJ. LRP promotes endocytosis and degradation, but not transcytosis, of the amyloid-beta peptide in a blood-brain barrier in vitro model. Neurobiol Dis 2008;30:94–102.CrossrefGoogle Scholar
51.
Demeule M, Regina A, Ché C, Poirier J, Nguyen T, Gabathuler R, et al. Identification and design of peptides as a new drug delivery system for the brain. J Pharm Exp Ther 2008;324:1064–72.Google Scholar
52.
Ren J, Shen S, Wang D, Xi Z, Guo L, Pang Z, et al. The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2. Biomaterials 2012;33:3324–33.CrossrefGoogle Scholar
53.
Huang S, Li J, Han L, Liu S, Ma H, Huang R, et al. Dual targeting effect of Angiopep-2-modified, DNA-loaded nanoparticles for glioma. Biomaterials 2011;32:6832–8.CrossrefGoogle Scholar
54.
Xin H, Sha X, Jiang X, Chen L, Law K, Gu J, et al. The brain targeting mechanism of Angiopep-conjugated poly(ethylene glycol)-co-poly(epsilon-caprolactone) nanoparticles. Biomaterials 2012;33:1673–81.CrossrefGoogle Scholar
55.
Krieger M, Herz J. Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu Rev Biochem 1994;63:601–37.CrossrefGoogle Scholar
56.
Pflanzner T, Janko MC, Andre-Dohmen B, Reuss S, Weggen S, Roebroek AJ, et al. LRP1 mediates bidirectional transcytosis of amyloid-beta across the blood-brain barrier. Neurobiol Aging 2011;32:2323.e1–11.Google Scholar
57.
de Boer AG, van der Sandt IC, Gaillard PJ. The role of drug transporters at the blood-brain barrier. Annu rev pharmacol 2003;43:629–56.CrossrefGoogle Scholar
58.
Wiley DT, Webster P, Gale A, Davis ME. Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proc Natl Acad Sci USA 2013;110:8662–7.CrossrefGoogle Scholar
59.
Yu YJ, Zhang Y, Kenrick M, Hoyte K, Luk W, Lu Y, et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med 2011;3:84ra44.CrossrefGoogle Scholar
60.
Niewoehner J, Bohrmann B, Collin L, Urich E, Sade H, Maier P, et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 2014;81:49–60.CrossrefGoogle Scholar
61.
Boado RJ, Zhang Y, Zhang Y, Wang Y, Pardridge WM. GDNF fusion protein for targeted-drug delivery across the human blood-brain barrier. Biotechnol Bioeng 2008;100:387–96.CrossrefGoogle Scholar
62.
Fu A, Zhou QH, Hui EK, Lu JZ, Boado RJ, Pardridge WM. Intravenous treatment of experimental Parkinson’s disease in the mouse with an IgG-GDNF fusion protein that penetrates the blood-brain barrier. Brain Res 2010;1352:208–13.Google Scholar
63.
Boado RJ, Zhou QH, Lu JZ, Hui EK, Pardridge WM. Pharmacokinetics and brain uptake of a genetically engineered bifunctional fusion antibody targeting the mouse transferrin receptor. Mol Pharm 2010;7:237–44.CrossrefGoogle Scholar
64.
van der Linden RH, Frenken LG, de Geus B, Harmsen MM, Ruuls RC, Stok W, et al. Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies. Biochim Biophys Acta 1999;1431:37–46.Google Scholar
65.
Simister NE, Mostov KE. An Fc receptor structurally related to MHC class I antigens. Nature 1989;337:184–7.CrossrefGoogle Scholar
66.
Schlachetzki F, Zhu C, Pardridge WM. Expression of the neonatal Fc receptor (FcRn) at the blood-brain barrier. J Neurochem 2002;81:203–6.CrossrefGoogle Scholar
67.
Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 2007;7:715–25.CrossrefGoogle Scholar
68.
Bien-Ly N, Yu YJ, Bumbaca D, Elstrott J, Boswell CA, Zhang Y, et al. Transferrin receptor (TfR) trafficking determines brain uptake of TfR antibody affinity variants. J Exp Med 2014;211:233–44.Google Scholar
69.
Fujita H, Iwabu Y, Tokunaga K, Tanaka Y. Membrane-associated RING-CH (MARCH) 8 mediates the ubiquitination and lysosomal degradation of the transferrin receptor. J Cell Sci 2013;126(Pt 13):2798–809.Google Scholar
70.
Bell RD, Ehlers MD. Breaching the blood-brain barrier for drug delivery. Neuron 2014;81:1–3.CrossrefGoogle Scholar
71.
Sade H, Baumgartner C, Hugenmatter A, Moessner E, Freskgard PO, Niewoehner J. A human blood-brain barrier transcytosis assay reveals antibody transcytosis influenced by pH-dependent receptor binding. PLoS One 2014;9:e96340.PubMedCrossrefGoogle Scholar
72.
Gaillard PJ, Brink A, de Boer AG. Diphtheria toxin receptor-targeted brain drug delivery. Int Congr Ser 2005;1277:185–98.Google Scholar
73.
Kuo Y-C, Liu Y-C. Cardiolipin-incorporated liposomes with surface CRM197 for enhancing neuronal survival against neurotoxicity. Int J Pharm 2014;473:334–44.Google Scholar
74.
Kuo Y-C, Chung C-Y. Transcytosis of CRM197-grafted polybutylcyanoacrylate nanoparticles for delivering zidovudine across human brain-microvascular endothelial cells. Colloids Surf, B 2012;91:242–9.Google Scholar
75.
van Rooy I, Mastrobattista E, Storm G, Hennink WE, Schiffelers RM. Comparison of five different targeting ligands to enhance accumulation of liposomes into the brain. J Control Release 2011;150:30–6.Google Scholar
76.
Lee HJ, Engelhardt B, Lesley J, Bickel U, Pardridge WM. Targeting rat anti-mouse transferrin receptor monoclonal antibodies through blood-brain barrier in mouse. J Pharm Exp Ther 2000;292:1048–52.Google Scholar
77.
Boado RJ, Zhang Y, Zhang Y, Pardridge WM. Humanization of anti-human insulin receptor antibody for drug targeting across the human blood-brain barrier. Biotechnol Bioeng 2007;96:381–91.CrossrefGoogle Scholar
78.
Kreuter J, Petrov VE, Kharkevich DA, Alyautdin RN. Influence of the type of surfactant on the analgesic effects induced by the peptide dalargin after its delivery across the blood–brain barrier using surfactant-coated nanoparticles. J Control Release 1997;49:81–7.CrossrefGoogle Scholar
79.
Couch JA, Yu YJ, Zhang Y, Tarrant JM, Fuji RN, Meilandt WJ, et al. Addressing safety liabilities of TfR bispecific antibodies that cross the blood-brain barrier. Sci Transl Med 2013;5:183ra57.Google Scholar
80.
Ohshima-Hosoyama S, Simmons HA, Goecks N, Joers V, Swanson CR, Bondarenko V, et al. A monoclonal antibody-GDNF fusion protein is not neuroprotective and is associated with proliferative pancreatic lesions in parkinsonian monkeys. PloS one 2012;7:e39036.CrossrefGoogle Scholar
81.
Nonaka N, Farr SA, Kageyama H, Shioda S, Banks WA. Delivery of galanin-like peptide to the brain: targeting with intranasal delivery and cyclodextrins. J Pharmacol Exp Ther 2008;325:513–9.CrossrefGoogle Scholar
82.
Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 2002;1:845–67.CrossrefGoogle Scholar
83.
Monopoli MP, Aberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 2012;7:779–86.CrossrefGoogle Scholar
84.
Treuel L, Brandholt S, Maffre P, Wiegele S, Shang L, Nienhaus GU. Impact of protein modification on the protein corona on nanoparticles and nanoparticle-cell interactions. ACS nano 2014;8:503–13.CrossrefGoogle Scholar
85.
Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V. Time evolution of the nanoparticle protein corona. ACS nano 2010;4:3623–32.CrossrefGoogle Scholar
86.
Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 2013;8:772–81.CrossrefGoogle Scholar
87.
Deng ZJ, Liang M, Monteiro M, Toth I, Minchin RF. Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat Nanotechnol 2011;6:39–44.CrossrefGoogle Scholar
88.
Maiorano G, Sabella S, Sorce B, Brunetti V, Malvindi MA, Cingolani R, et al. Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response. ACS nano 2010;4:7481–91.CrossrefGoogle Scholar
89.
Hamad I, Al-Hanbali O, Hunter AC, Rutt KJ, Andresen TL, Moghimi SM. Distinct polymer architecture mediates switching of complement activation pathways at the nanosphere-serum interface: implications for stealth nanoparticle engineering. ACS nano 2010;4:6629–38.CrossrefGoogle Scholar
90.
Zensi A, Begley D, Pontikis C, Legros C, Mihoreanu L, Wagner S, et al. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. J Control Release 2009;137:78–86.CrossrefGoogle Scholar
91.
Hoshino Y, Koide H, Urakami T, Kanazawa H, Kodama T, Oku N, et al. Recognition, neutralization, and clearance of target peptides in the bloodstream of living mice by molecularly imprinted polymer nanoparticles: a plastic antibody. J Am Chem Soc 2010;132:6644–5.CrossrefGoogle Scholar
92.
Salvati A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR, et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 2013;8:137–43.CrossrefGoogle Scholar
93.
Zarschler K, Prapainop K, Mahon E, Rocks L, Bramini M, Kelly PM, et al. Diagnostic nanoparticle targeting of the EGF-receptor in complex biological conditions using single-domain antibodies. Nanoscale 2014.Google Scholar
Comments (0)