Jump to ContentJump to Main Navigation
Show Summary Details
More options …

European Journal of Tourism, Hospitality and Recreation

The Journal of Polytechnic Institute of Leiria

3 Issues per year

Open Access
Online
ISSN
2182-4924
See all formats and pricing
More options …

Determinants of trip duration for international tourists in Norway; a parametric survival analysis

Tannaz Alizadeh Ashrafi
  • Corresponding author
  • Muninbakken 21, 9019, Tromsø, Norway, UiT–The Arctic University of Norway, Phone: 004777620824
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Øystein Myrland
Published Online: 2017-10-10 | DOI: https://doi.org/10.1515/ejthr-2017-0008

Abstract

How long a tourist stays in a host country acts as an indicator of tourism industry’s contribution towards the national economy. The purpose of this study is to examine how socio-demographic characteristics of international tourists, their travelling purpose, tourism products and characteristics of the destination influence the length of stay in Norway, by estimating a parametric survival model. Total cost of trip, purpose of travel, type of accommodation and transportation, age of tourist and geographical area are key elements that explain the variation in the length of tourist stay in Norway. The Cox proportional hazard model with time-independent covariates indicates the survival probability of tourists with less budget constraints and younger ages is higher than that of low-spending tourists and elderly travelers. Moreover, tourists with the purpose of friend and family visitation are at lower risk of leaving Norway than are tourists with other purposes. In terms of tourism products, choosing camping sites as the type of accommodation and road transport as the mode of transportation are associated with the highest survival probability. Another key finding is that tourists stay longer in northern Norway than in southern Norway; hence, on average, tourists’ overall expenditures are higher in northern Norway.

Keywords: Tourism; Length of stay; Survival analysis; Cox proportional hazard model; Weibull distribution

References

  • [1] Aalen, O., Borgan, O., & Gjessing, H. (2008). Survival and event history analysis: a process point of view. New Yrok: Springer Science & Business Media.Google Scholar

  • [2] Alegre, J., & Pou, L. (2006). The length of stay in the demand for tourism. Tourism management, 27(6), 1343-1355.CrossrefGoogle Scholar

  • [3] Ansell, J., & Phillips, M. (1996). Practical Methods for Reliability Data Analysis (Vol. 159). Oxford Oxford Science.Google Scholar

  • [4] Barros, C. P., Butler, R., & Correia, A. (2010). The length of stay of golf tourism: A survival analysis. Tourism management, 31(1), 13-21.CrossrefGoogle Scholar

  • [5] Barros, C. P., Correia, A., & Crouch, G. (2008). Determinants of the length of stay in Latin American tourism destinations. Tourism Analysis, 13(4), 329-340.Google Scholar

  • [6] Barros, C. P., & Machado, L. P. (2010). The length of stay in tourism. Annals of Tourism Research, 37(3), 692-706.CrossrefGoogle Scholar

  • [7] Boissevain, J. (1996). Coping with tourists: European reactions to mass tourism (Vol. 1). Oxford: Berghahn Books.Google Scholar

  • [8] Box-Steffensmeier, J. M., & Jones, B. S. (2004). Event history modeling: A guide for social scientists. New York: Cambridge University Press.Google Scholar

  • [9] Burger, C. J. S. C., Dohnal, M., Kathrada, M., & Law, R. (2001). A practitioners guide to time-series methods for tourism demand forecasting — a case study of Durban, South Africa. Tourism management, 22(4), 403-409.CrossrefGoogle Scholar

  • [10] Candela, G., & Figini, P. (2012). The economics of tourism destinations. Heidelberg: Springer.Google Scholar

  • [11] Cleves, M., Gould, W., Gutierrez, R. G., & Marchenko, Y. V. (2010). An Introduction to Survival Analysis Using Stata. Texas: Stata Press.Google Scholar

  • [12] Culiuc, A. (2014). Determinants of International Tourism - IMF Working Paper No. 14/82. Retrieved from Washington:Google Scholar

  • [13] Dadgostar, B., & Isotalo, R. M. (1992). Factors affecting time spent by near-home tourists in city destinations. Journal of Travel Research, 31(2), 34-39.Google Scholar

  • [14] David, W., Hosmer, S., Stanley, L., & Susanne, M. (2008). Applied survival analysis: Regression Modeling of Time to Event Data (Second ed.). Hoboken: Wiley Interscience.Google Scholar

  • [15] Davies, B., & Mangan, J. (1992). Family expenditure on hotels and holidays. Annals of Tourism Research, 19(4), 691-699.CrossrefGoogle Scholar

  • [16] De Menezes, A. G., Moniz, A., & Vieira, J. C. (2008). The determinants of length of stay of tourists in the Azores. Tourism Economics, 14(1), 205-222.CrossrefGoogle Scholar

  • [17] Efron, B. (1977). The efficiency of Cox’s likelihood function for censored data. Journal of the American Statistical Association, 72(359), 557-565.Google Scholar

  • [18] Enger, A., Sandvik, K., & Kildal Iversen, E. (2015). Developing scenarios for the Norwegian travel industry 2025. Journal of Tourism Futures, 1(1), 6-18.Google Scholar

  • [19] Etzel, M. J., & Woodside, A. G. (1982). Segmenting vacation markets: The case of the distant and near-home travelers. Journal of Travel Research, 20(4), 10-14.Google Scholar

  • [20] Farr, M., & Guegan, X. (2013). The British Abroad Since the Eighteenth Century : travellers and tourists (Vol. 1& 2). Newcastle: Palgrave Macmillan.Google Scholar

  • [21] Fjågesund, P., & Syme, R. A. (2003). The Northern Utopia: British Perceptions of Norway in the Nineteenth Century (Vol. 10). Amesterdam: Rodopi.Google Scholar

  • [22] Fleischer, A., & Pizam, A. (2002). Tourism constraints among Israeli seniors. Annals of Tourism Research, 29(1), 106-123.CrossrefGoogle Scholar

  • [23] Fouquet, R. (2012). Trends in income and price elasticities of transport demand (1850–2010). Energy Policy, 50, 62-71. doi:https://doi.org/10.1016/j.enpol.2012.03.001Crossref

  • [24] Gallet, C. A., & Doucouliagos, H. (2014). The income elasticity of air travel: A meta-analysis. Annals of Tourism Research, 49, 141-155.Google Scholar

  • [25] Gokovali, U., Bahar, O., & Kozak, M. (2007). Determinants of length of stay: A practical use of survival analysis. Tourism management, 28(3), 736-746.CrossrefGoogle Scholar

  • [26] Goodall, B., & Ashworth, G. J. (1988). Marketing in the Tourism Industry: The promotion of destination regions. London: International Thomson Publishing Services.Google Scholar

  • [27] Hall, C. M., Muller, D. K., & Saarinen, J. (2008). Nordic tourism: Issues and cases. Bristol: Channel View Publications.Google Scholar

  • [28] Harrell, F. E., Califf, R. M., Pryor, D. B., Lee, K. L., & Rosati, R. A. (1982). Evaluating the yield of medical tests. Journal of the American Medical Association, 247(18), 2543-2546.Google Scholar

  • [29] Holloway, J. C., & Taylor, N. (2006). The business of tourism. Harlow: Prentice Hall.Google Scholar

  • [30] Hong, S.-k., & Jang, H. (2005). Factors influencing purchasing time of a new casino product and its managerial implications: An exploratory study. Journal of Travel Research, 43(4), 395-403.Google Scholar

  • [31] Kazuzuru, B. (2014). Determinants of Tourist Length of Stay in Tanzania. International Journal of Business and Social Science, 5(9(1)), 204-214.Google Scholar

  • [32] Lancaster, T. (1992). The econometric analysis of transition data. Cambridge: Cambridge university press.Google Scholar

  • [33] Lew, A. A. (1987). A framework of tourist attraction research. Annals of Tourism Research, 14(4), 553-575.CrossrefGoogle Scholar

  • [34] Lickorish, L. J., & Jenkins, C. L. (1997). An Introduction to Tourism. Oxford: HeinemannGoogle Scholar

  • [35] Lim, C. (1997). Review of international tourism demand models. Annals of Tourism Research, 24(4), 835-849.CrossrefGoogle Scholar

  • [36] Liu, X. (2012). Survival Analysis: Models and Applications. West Sussex: Higher Education Press.Google Scholar

  • [37] Lovelock, B. (2007). Tourism and the consumption of wildlife: Hunting, shooting and sport fishing. New York: Routledge.Google Scholar

  • [38] Machado, L. P. (2010). Does destination image influence the length of stay in a tourism destination? Tourism Economics, 16(2), 443-456.CrossrefGoogle Scholar

  • [39] Martínez-Garcia, E., & Raya, J. M. (2008). Length of stay for low-cost tourism. Tourism management, 29(6), 1064-1075.Google Scholar

  • [40] Matias Alvaro, Nijkamp Peter, & sarmento Manuela. (2009). Advances in Tourism Economics-New Developments. London: A Springer Company.CrossrefGoogle Scholar

  • [41] Mok, C., & Iverson, T. J. (2000). Expenditure-based segmentation: Taiwanese tourists to Guam. Tourism management, 21(3), 299-305.CrossrefGoogle Scholar

  • [42] Murthy, D. N. P., Xie, M., & Jiang, R. (2004). Weibull Models. New Jersey: John Wiley & Sons.Google Scholar

  • [43] Müller, D. K., & Grenier, A. A. (2011). Polar Tourism: A Tool for Regional development Quebec Presses de l’Université du Québec.Google Scholar

  • [44] Nogawa, H., Yamaguchi, Y., & Hagi, Y. (1996). An empirical research study on Japanese sport tourism in sport-for-all events: Case studies of a single-night event and a multiplenight event. Journal of Travel Research, 35(2), 46-54.Google Scholar

  • [45] Oakes, D. (1977). The asymptotic information in censored survival data. Biometrika, 64(3), 441-448.CrossrefGoogle Scholar

  • [46] Ousby, I. (1990). The Englishman’s England: taste, travel and the rise of tourism. Cambridge: Cambridge University Press.Google Scholar

  • [47] Schoenfeld, D. (1982). Partial residuals for the proportional hazards regression model. Biometrika, 69(1), 239-241.Google Scholar

  • [48] Sezgin, E., & Yolal, M. (2012). Golden Age of Mass Tourism: Its History and Development. Ankara: INTECHGoogle Scholar

  • [49] Silberman, J. (1985). A demand function for length of stay: the evidence from Virginia Beach. Journal of Travel Research, 23(4), 16-23.Google Scholar

  • [50] Song, H., Li, g., Witt, S. F., & Fei, B. (2010). Tourism demand modelling and forecasting: how should demand be measured. Tourism Economics, 16(1), 63-81.CrossrefGoogle Scholar

  • [51] Svalastog, S. (1992). Tourism in a changing Norway. Norsk Geografisk Tidsskrift-Norwegian Journal of Geography, 46(2), 109-116.CrossrefGoogle Scholar

  • [52] Swarbrooke, J., & Horner, S. (2007). Consumer behaviour in tourism. New York: Routledge.Google Scholar

  • [53] Therneau, T. M., Grambsch, P. M., & Fleming, T. R. (1990). Martingale-based residuals for survival models. Biometrika, 77(1), 147-160.Google Scholar

  • [54] Thrane, C. (2012). Analyzing tourists’ length of stay at destinations with survival models: A constructive critique based on a case study. Tourism management, 33(1), 126-132.CrossrefGoogle Scholar

  • [55] Thrane, C. (2015). Research note: The determinants of tourists’ length of stay: some further modelling issues. Tourism Economics, 21(5), 1087-1093.Google Scholar

  • [56] Towner, J. (1985). The Grand Tour, A Key Phase in the History of Tourism. Annals of Tourism Research., 12(3), 297-333.CrossrefGoogle Scholar

  • [57] Towner, J. (1988). Approaches to tourism history. Annals of Tourism Research, 15(1), 47-62.CrossrefGoogle Scholar

  • [58] Towner, J. (1995). What is tourism’ s history? Tourism Managemen, 16(5), 339-343.Google Scholar

  • [59] Towner, J., & Wall, G. (1991). HISTORY AND TOURISM. Annals of Tourism Research, 18(1), 71-84.Google Scholar

  • [60] Turner, L. W., & Witt, S. F. (2001). Factors influencing demand for international tourism: Tourism demand analysis using structural equation modelling, revisited. Tourism Economics, 7(1), 21-38.CrossrefGoogle Scholar

  • [61] Van den Berg, G. J. (2001). Chapter 55 - Duration models: specification, indetification and multiple durations. In J. J. Heckman & E. Leamer (Eds.), Handbook of econometrics (Vol. 5): Elsevier.Google Scholar

  • [62] Walchester, K. (2014). Gamle Norge and Nineteenth-century British Women Travellers in Norway. London: Anthem Press.Google Scholar

  • [63] Weaver, P. A., McCleary, K. W., Lapisto, L., & Damonte, L. T. (1994). The relationship of destination selection attributes to psychological, behavioral and demographic variables. Journal of Hospitality & Leisure Marketing, 2(2), 93-109.Google Scholar

  • [64] Witt, S. F., & Witt, C. A. (1995). Forecasting tourism demand: A review of empirical research. Interational journal of forecasting, 11(3), 447-475.Google Scholar

  • [65] Cox, D. R. (1972). Regression Models and Life-Tables. Journal of the Royal Statistical Society-Series B (methodological), 34(2), 187-220.Google Scholar

About the article

Received: 2017-04-19

Accepted: 2017-08-27

Published Online: 2017-10-10

Published in Print: 2017-05-01


Citation Information: European Journal of Tourism, Hospitality and Recreation, Volume 8, Issue 1, Pages 75–86, ISSN (Online) 2182-4924, DOI: https://doi.org/10.1515/ejthr-2017-0008.

Export Citation

© 2017 Tannaz Alizadeh Ashrafi et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in