Ai, C. and Norton, E. C. (2003). Interaction terms in logit and probit models. Economics Letters, 80:123–129. CrossrefGoogle Scholar

Albert, P. S., Ratnasinghe, D., Tangrea, J., and Wacholder, S. (2001). Limitations of the case-only design for identifying gene–environment interactions. American Journal of Epidemiology, 154:687–693. PubMedCrossrefGoogle Scholar

Almirall, D., Ten Have, T., and Murphy, S. A. (2010). Structural nested mean models for assessing time-varying effect moderation. Biometrics, 66:131–139. CrossrefPubMedGoogle Scholar

Andersson, T., Alfredsson, L., Kallberg, H., Zdravkovic, S., and Ahlbom, A. (2005). Calculating measures of biological interaction. European Journal of Epidemiology, 20:575–579. PubMedCrossrefGoogle Scholar

Assmann, S. F., Hosmer, D. W., Lemeshow, S., and Mundt, K. A. (1996). Confidence intervals for measures of interaction. Epidemiology, 7:286–290. CrossrefPubMedGoogle Scholar

Bennett, W. P., Alavanja, M. C. R., Blomeke, B., Vähäkangas, K. H., Castrén, K., Welsh, J. A., Bowman, E. D., Khan, M. A., Flieder, D. B., and Harris, C. C. (1999). Environmental tobacco smoke, genetic susceptibility, and risk of lung cancer in never-smoking women. Journal of the National Cancer Institute, 91:2009–2014. PubMedCrossrefGoogle Scholar

Bhavnani, D., Goldstick, J. E., Cevallos, W., Trueba, G., and Eisenberg, J. N. S. (2012). Synergistic effects between rotavirus and coinfecting pathogens on diarrheal disease: Evidence from a community-based study in northwestern Ecuador. American Journal of Epidemiology, 176:387–395. PubMedCrossrefGoogle Scholar

Blot, W. J. and Day, N. E. (1979). Synergism and interaction: Are they equivalent? American Journal of Epidemiology, 110:99–100. PubMedGoogle Scholar

Bonetti, M. and Gelber, R. D. (2000). A graphical method to assess treatment-covariate interactions using the cox model on subsets of the data. Statistics in Medicine, 19:2595–2609. CrossrefPubMedGoogle Scholar

Bonetti, M. and Gelber, R. D. (2005). Patterns of treatment effects in subsets of patients in clinical trials. Biostatistics, 5:465–481. Google Scholar

Botto, L. D. and Khoury, M. J. (2001). Facing the challenge of gene–environment interaction: the two-by-four table and beyond. American Journal of Epidemiology, 153:1016–1020. CrossrefPubMedGoogle Scholar

Cai, T., Tian, L., Wong, P. H., and Wei, L. J. (2011). Analysis of randomized comparative clinical trial data for personalized treatment selections. Biostatistics, 12:270–282. CrossrefPubMedGoogle Scholar

Chatterjee, N. and Carroll, R. J. (2005). Semiparametric maximum likelihood estimation exploiting gene–environment independence in case–control studies. Biometrika, 92:399–418. CrossrefGoogle Scholar

Chatterjee, N., Kalaylioglu, Z., Moleshi, R., Peters, U., and Wacholder, S. (2006). Powerful multilocus tests of genetic association in the presence of gene–gene and gene–environment interactions. American Journal of Human Genetics, 79:1002–1016. PubMedCrossrefGoogle Scholar

Cheng, K. F. and Lin, W. J. (2009). The effects of misclassification in studies of gene–environment interactions. Human Heredity, 67:77–87. PubMedCrossrefGoogle Scholar

Chu, H., Nie, L., and Cole, S. R. (2011). Estimating the relative excess risk due to interaction: A Bayesian approach. Epidemiology, 22:242–248. CrossrefPubMedGoogle Scholar

Cordell, H. J. (2002). Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans. Human Molecular Genetics, 11, 2463–2468. CrossrefPubMedGoogle Scholar

Cordell, H. J. (2009). Detecting gene–gene interaction that underlie human diseases. Nature Reviews Genetics, 10:392–404. PubMedCrossrefGoogle Scholar

Cornfield, J., Haenszel, W., Hammond, E. C., Lilienfeld, A. M., Shimkin, M. B., and Wynder, L. L. (1959). Smoking and lung cancer: Recent evidence and a discussion of some questions. Journal of the National Cancer Institute, 22:173–203. PubMedGoogle Scholar

Dai, J., Logsdon, B., Huang, Y., et al. (2012). Simultaneous testing for marginal genetic association and gene–environment interaction in genome-wide association studies. American Journal of Epidemiology, 176:164–173. CrossrefGoogle Scholar

de González, A. B, and Cox, D. R. (2007). Interpretation of interaction: A review. Annals of Applied Statistics, 1:371–385. CrossrefGoogle Scholar

Deeks, J. J. and Altman, D. G. (2003). Effect measures for met-analysis of trials with binary outcomes. In: Systematic Reviews in Health Care: Meta-Analysis in Context, M. Egger, G. Davey Smith, and D. G. Altman (Eds.), 313–335. London: BMJ Publishing Group. Google Scholar

Demidenko, E. (2008). Sample size and optimal design for logistic regression with binary interaction. Statistics in Medicine, 27:36–46. CrossrefPubMedGoogle Scholar

Engels, E. A., Schmid, C. H., Terrin, N., et al. (2000). Heterogeneity and statistical significance in meta-analysis: An empirical study of 125 meta-analyses. Statistics in Medicine, 19:1707–1728. CrossrefPubMedGoogle Scholar

Figueiredo, J. C., Knight, J. A., Briollais, L., Andrulis, I. L., and Ozcelik, H. (2004). Polymorphisms XRCC1-R399Q and XRCC3-T241M and the risk of breast cancer at the Ontario Site of the Breast Cancer Family Registry. Cancer Epidemiology, Biomarkers and Prevention, 13:583–591. Google Scholar

Foppa, I. and Spiegelman, D. (1997). Power and sample size calculations for case–control studies of gene–environment interactions with a polytomous exposure variable. American Journal of Epidemiology, 146:596–604. PubMedCrossrefGoogle Scholar

Gail, M. and Simon, R. (1985). Testing for qualitative interactions between treatment effects and patient subsets. Biometrics, 41:361–372. CrossrefPubMedGoogle Scholar

Garcia-Closas, M. and Lubin, J. H. (1999). Power and sample size calculations in case–control studies of gene–environment interactions: Comments on different approaches. American Journal of Epidemiology, 149:689–692. CrossrefPubMedGoogle Scholar

Garcia-Closas, M., Thompson, W. D., and Robins, J. M. (1998). Differential misclassification and the assessment of gene–environment interactions. American Journal of Epidemiology, 147:426–433. CrossrefPubMedGoogle Scholar

Gauderman, W. J. (2002a). Sample size requirements for association studies of gene–gene interaction. American Journal of Epidemiology, 155:478–484. CrossrefGoogle Scholar

Gauderman, W. J. (2002b). Sample size requirements for matched case–control studies of gene–environment interaction. Statistics in Medicine, 21:35–50. CrossrefGoogle Scholar

Gayan, J., et al. (2008). A method for detecting epistasis in genome-wide studies using case–control multi-locus association analysis. BMC Genomics, 9:360. CrossrefPubMedGoogle Scholar

Greenland, S. (1983). Tests for interaction in epidemiologic studies: A review and study of power. Statistics in Medicine, 2:243–251. CrossrefPubMedGoogle Scholar

Greenland, S. (2009). Interactions in epidemiology: relevance, identification and estimation. Epidemiology, 20:14–17. PubMedCrossrefGoogle Scholar

Greenland, S., Lash, T. L., and Rothman, K. J. (2008). “Concepts of interaction,” chapter 5. In: Modern Epidemiology, K. J. Rothman, S. Greenland, and T. L. Lash (Eds.). 3rd Edition. Philadelphia, PA: Lippincott Williams and Wilkins. Google Scholar

Han, S. S., Rosenberg, P. S., Garcia-Closas, M., Figueroa, J. D., Silverman, D., Chanock, S. J., Rothman, N., and Chatterjee, N. (2012). Likelihood ratio test for detecting gene (G)–environment (E) interactions under an additive risk model exploiting G-E independence for case–control data. American Journal of Epidemiology, 176:1060–1067. CrossrefGoogle Scholar

Hill, A. B. (1965). The environment and disease: Association or causation? Proceedings of the Royal Society of Medicine, 58:295–300. PubMedGoogle Scholar

Hilt, B., Langård, S., Lund-Larsen, P. G., and Lien, J. T. (1986). Previous asbestos exposure and smoking habits in the county of Telemark, Norway – A cross-sectional population study. Scandinavian Journal of Work, Environment and Health, 12:561–566. CrossrefGoogle Scholar

Hoffmann, T. J., Lange, C., Vansteelandt, S., and Laird, N. M. (2009). Gene–environment interaction tests for dichotomous traits in trios and sibships. Genetic Epidemiology, 33:691–699. CrossrefPubMedGoogle Scholar

Hosmer, D. W. and Lemeshow, S. (1992). Confidence interval estimation of interaction. Epidemiology, 3:452–456. PubMedCrossrefGoogle Scholar

Hwang, S.-J., Beaty, T. H., Liang, K.-Y., Coresh, J., and Khoury, M. J. (1994). Minimum sample size estimation to detect gene–environment interaction in case–control designs. American Journal of Epidemiology, 140:1029–1037. PubMedGoogle Scholar

Khoury, M. J. and Wacholder, S. (2009). From Genome-wide association studies to gene–environment-wide interaction studies – Challenges and opportunities. American Journal of Epidemiology, 169:227–230. PubMedGoogle Scholar

Knol, M. J., Egger, M., Scott, P., Geerlings, M. I., and Vandenbroucke, J. P. (2009). When one depends on the other: Reporting of interaction in case–control and cohort studies. Epidemiology, 2009(20):161–166. CrossrefGoogle Scholar

Knol, M. J., Vandenbroucke, J. P., Scott, P., and Egger, M. (2008). What do case–control studies estimate? Survey of methods and assumptions in published case–control research. American Journal of Epidemiology, 168:1073–1081. PubMedCrossrefGoogle Scholar

Knol, M. J. and VanderWeele, T. J. (2012). Guidelines for presenting analyses of effect modification and interaction. International Journal of Epidemiology, 41:514–520. CrossrefGoogle Scholar

Knol, M. J., VanderWeele, T. J., Groenwold, R. H. H., Klungel, O. H., Rovers, M. M., and Grobbee, D. E. (2011). Estimating measures of interaction on an additive scale for preventive exposures. European Journal of Epidemiology, 26:433–438. PubMedCrossrefGoogle Scholar

Knol, M. J., le Cessie, S., Algra, A., Vandenbroucke, J. P., and Groenwold, R. H. H. (2012). Overestimation of risk ratios by odds ratios in trials and cohort studies: Alternatives to logistic regression. Canadian Medical Association Journal, 184:895–899. CrossrefGoogle Scholar

Knol, M. J., van der Tweel, I., Grobbee, D. E., Numans, M. E., and Geerlings, M. I. (2007). Estimating interaction on an additive scale between continuous determinants in a logistic regression model. International Journal of Epidemiology, 36:1111–1118. CrossrefGoogle Scholar

Kraft, P. (2004). Multiple comparisons in studies of gene x gene and gene x environment interaction. American Journal of Human Genetics, 74:582–585. PubMedCrossrefGoogle Scholar

Kraft, P., Yen, Y. C., Stram, D. O., Morrison, J., and Gauderman, W. J. (2007). Exploiting gene–environment interaction to detect disease susceptibility loci. Human Heredity, 63:111–119. PubMedCrossrefGoogle Scholar

Kuss, O., Schmidt-Pokrzywniak, A., and Stang, A. (2010). Confidence intervals for the interaction contrast ratio. Epidemiology, 21:273–274. PubMedCrossrefGoogle Scholar

Kuyvenhoven, J. P., Veenendaal, R. A., and Vandenbroucke, J. P. (1999). Peptic ulcer bleeding: Interaction between non-steroidal anti-inflammatory drugs, Helicobacter pylori infection, and the ABO blood group system. Scandinavian Journal of Gastroenterol, 34:1082–1086. CrossrefGoogle Scholar

Lake, S. and Laird, N. (2004). Tests of gene–environment interaction for case-parent triads with general environmental exposures. Annals of Human Genetics, 68:55–64. CrossrefPubMedGoogle Scholar

Lawlor, D. A. (2011). Biological interaction: Time to drop the term? Epidemiology, 22:148–150. PubMedCrossrefGoogle Scholar

Li, Y., et al. (2010). Genetic variants and risk of lung cancer in never smokers: A genome-wide association study. Lancet Oncology, 11:321–330. CrossrefGoogle Scholar

Li, R. and Chambless, L. (2007). Test for additive interaction in proportional hazards models. Annals of Epidemiology, 17:227–236. CrossrefPubMedGoogle Scholar

Li, J. and Chan, I. S. (2006). Detecting qualitative interactions in clinical trials: An extension of range test. Journal of Biopharmaceutical Statistics, 16:831–841. CrossrefPubMedGoogle Scholar

Lindström, S., Yen, Y.-C., Spiegelman, D., and Kraft, P. (2009). The impact of gene–environment dependence and misclassification in genetic association studies incorporating gene–environment interactions. Human Heredity, 68:171–181. PubMedCrossrefGoogle Scholar

Lundberg, M., Fredlund, P., Hallqvist, J., and Diderichsen, F. (1996). A SAS program calculating three measures of interaction with confidence intervals. Epidemiology, 7:655–656. PubMedGoogle Scholar

Maity, A., Carroll, R. J., Mammen, E., and Chatterjee, N. (2009). Testing in semiparametric models with interaction, with applications to gene–environment interactions. Journal of the Royal Statistical Society, Series B, 71:75–96. CrossrefGoogle Scholar

Miller, D. P., Liu, G., De Vivo, I., et al. (2002). Combinations of the variant genotypes of GSTP1, GSTM1, and p53 are associated with an increased lung cancer risk. Cancer research, 62:2819–2823. PubMedGoogle Scholar

Mukherjee, B. and Chatterjee, N. (2008). Exploiting gene–environment independence for analysis of case–control studies: An empirical-Bayes type shrinkage estimator to trade off between bias and efficiency. Biometrics, 64:685–694. PubMedCrossrefGoogle Scholar

Mukherjee, B., Zhang, L., Ghosh, M., and Sinha, S. (2007). Semiparametric Bayesian analysis of case–control data under conditional gene–environment independence. Biometrics, 63:834–844. CrossrefPubMedGoogle Scholar

Murcray, C. E., Lewinger J. P., and Gauderman, W. J. (2009). Gene–environment interaction in genome-wide association studies. American Journal of Epidemiology, 169:219–226. PubMedGoogle Scholar

Nie, L., Chu, H., Li, F., and Cole, S. R. (2010). Relative excess risk due to interaction: resampling-based confidence intervals. Epidemiology, 21:552–556. PubMedCrossrefGoogle Scholar

Norton, E. C., Wang, H., and Ai, C. (2004). Computing interaction effects and standard errors in logit and probit models. Stata Journal, 4:154–167. Google Scholar

Pan, G. and Wolfe, D. A. (1997). Test for qualitative interaction of clinical significance. Statistics in Medicine, 16:1645–1652. PubMedCrossrefGoogle Scholar

Petersen, M. L., Deeks, S. G., Martin, J. N., and van der Laan, M. J. (2007). History-adjusted marginal structural models for estimating time-varying effect modification. American Journal of Epidemiology, 166:985–993. CrossrefPubMedGoogle Scholar

Peto, R. (1982). Statistical aspects of cancer trials. In: Treatment of Cancer, K. E. Halnan (Ed.), 867–871. London: Chapman and Hall. Google Scholar

Phillips, P. C. (2008). Epistasis – The essential role of gene interactions in the structure and evolution of genetic systems. Nature Reviews Genetic, 9:855–867. CrossrefGoogle Scholar

Piantadosi, S. and Gail, M. H. (1993). A comparison of the power of two tests for qualitative interactions. Statistics in Medicine, 12:1239–1248. PubMedCrossrefGoogle Scholar

Piegorsch, W. W., Weinberg, C. R., and Taylor, J. A. (1994). Non-hierarchical logistic models and case-only designs for assessing susceptibility in population-based case–control studies. Statistics in Medicine, 13:153–162. PubMedCrossrefGoogle Scholar

Pierce, B. L. and Ahsan, H. (2010). Case-only genome-wide interaction study of disease risk, prognosis and treatment. Genetic Epidemiology, 34:7–15. PubMedGoogle Scholar

Poole, C. (2010). On the origin of risk relativism. Epidemiology, 21:3–9. PubMedCrossrefGoogle Scholar

Richardson, D. B. and Kaufman, J. S. (2009). Estimation of the relative excess risk due to interaction and associated confidence bounds. American Journal of Epidemiology, 169:756–760. CrossrefPubMedGoogle Scholar

Robins, J. M.Hernán, M. A., and Brumback, B. (2000). Marginal structural models and causal inference in epidemiology. Epidemiology, 11:550–560. CrossrefPubMedGoogle Scholar

Robins, J. M., Hernán, M. A., and Rotnitzky, A. (2007). Effect modification by time-varying covariates. American Journal of Epidemiology, 166:994–1002.CrossrefPubMedGoogle Scholar

Rod, N. H., Lange, T., Andersen, I., Marott, J. L., Diderichsen, F. (2012). Additive interaction in survival analysis: use of the additive hazards model. Epidemiology. 23:733–737. CrossrefPubMedGoogle Scholar

Rothman, K. J. (1976). Causes. American Journal of Epidemiology, 104:587–592. PubMedGoogle Scholar

Rothman, K. J. (1986). Modern Epidemiology. 1st Edition. Boston, MA: Little, Brown and Company. Google Scholar

Rothman, K. J., Greenland, S., and Walker, A. M. (1980). Concepts of interaction. American Journal of Epidemiology, 112:467–470. PubMedGoogle Scholar

Rothman, K. J., and Greenland, S. editors. (1998). Modern epidemiology. 2nd Edition. Philadelphia: Lippincott. Google Scholar

Saracci, R. (1980). Interaction and synergism. American Journal of Epidemiology, 112:465–466. PubMedGoogle Scholar

Siemiatycki, J. and Thomas, D. C. (1981). Biological models and statistical interactions: An example from multistage carcinogenesis. International Journal of Epidemiology, 10:383–387. PubMedCrossrefGoogle Scholar

Silvapulle, M. J. (2001). Tests against qualitative interaction: Exact critical values and robust tests. Biometrics, 57:1157–1165. CrossrefPubMedGoogle Scholar

Skrondal, A. (2003). Interaction as departure from additivity in case–control studies: A cautionary note. American Journal of Epidemiology, 158(3):251–258. PubMedCrossrefGoogle Scholar

Song, X. and Pepe, M. S. (2004). Evaluating markers for selecting a patient’s treatment. Biometrics, 60:874–883. CrossrefPubMedGoogle Scholar

Sterne, J. A. and Egger, M. (2001). Funnel plots for detecting bias in meta-analysis: Guidelines on choice of axis. Journal of Clinical Epidemiology, 54:1046–1055. CrossrefPubMedGoogle Scholar

Szklo, M. and Nieto, F. J. (2007). Epidemiology: Beyond the Basics. 2nd Edition. Boston, MA: Jones and Bartlee Publishers. Google Scholar

Tchetgen Tchetgen, E. J. (2010). On the interpretation, robustness, and power of varieties of case-only tests of gene–environment interaction. American Journal of Epidemiology, 172:1335–1338. PubMedCrossrefGoogle Scholar

Tchetgen Tchetgen, E. J. and Kraft, P. (2011). On the robustness of tests of genetic associations incorporating gene–environment interaction when the environmental exposure is misspecified. Epidemiology, 22:257–261. CrossrefPubMedGoogle Scholar

Tchetgen Tchetgen, E. J. and Robins, J. M. (2010). The semi-parametric case-only estimator. Biometrics, 66:1138–1144. CrossrefGoogle Scholar

Tchetgen Tchetgen, E. J. and VanderWeele, T. J. (2012). Robustness of measures of interaction to unmeasured confounding. Harvard University, Technical Report. Google Scholar

Thomas, D. (2010). Gene–environment-wide association studies: Emerging approaches. Nature Reviews Genetics, 11:259–272. CrossrefPubMedGoogle Scholar

Thompson, W. D. (1991). Effect modification and the limits of biologic inference from epidemiologic data. Journal of Clinical Epidemiology, 44:221–232. CrossrefGoogle Scholar

Umbach, D. and Weinberg, C. (2000). The use of case-parent triads to study joint effects of genotype and exposure. American Journal of Human Genetics, 66:251–261. CrossrefPubMedGoogle Scholar

Vandenbroucke, J. P., Koster, T., Briët, E., Reitsma, P. H., Bertina, R. M., and Rosendaal, F. R. (1994). Increased risk of venous thrombosis in oral-contraceptive users who are carriers of factor V Leiden mutation. Lancet, 344:1453–1457. CrossrefPubMedGoogle Scholar

Vandenbroucke, J. P., von Elm, E., Altman, D. G., et al. (2007). Strengthening the reporting of observational studies in epidemiology (STROBE): Explanation and elaboration. Epidemiology, 18:805–835. PubMedCrossrefGoogle Scholar

VanderWeele, T. J. (2009a). On the distinction between interaction and effect modification. Epidemiology, 20:863–871. CrossrefGoogle Scholar

VanderWeele, T. J. (2009b). Sufficient cause interactions and statistical interactions. Epidemiology, 20:6–13. CrossrefGoogle Scholar

VanderWeele, T. J. (2010a). Empirical tests for compositional epistasis. Nature Reviews Genetics, 11:166. CrossrefGoogle Scholar

VanderWeele, T. J. (2010b). Epistatic interactions. Statistical Applications in Genetics and Molecular Biology, 9(Article 1):1–22. Google Scholar

VanderWeele, T. J. (2010c). Response to “On the definition of effect modification,” by E. Shahar and D.J. Shahar. Epidemiology, 21:587–588. CrossrefGoogle Scholar

VanderWeele, T. J. (2010d). Sufficient cause interactions for categorical and ordinal exposures with three levels. Biometrika, 97:647–659. CrossrefGoogle Scholar

VanderWeele, T. J. (2011a). A word and that to which it once referred: assessing “biologic” interaction. Epidemiology, 22:612–613. CrossrefGoogle Scholar

VanderWeele, T. J. (2011b). Causal interactions in the proportional hazards model. Epidemiology, 22:713–717.CrossrefGoogle Scholar

VanderWeele, T. J. (2011c). Sample size and power calculations for case-only interaction studies: Formulas for common test statistics. Epidemiology, 22:873–874. CrossrefGoogle Scholar

VanderWeele, T. J. (2012a). Sample size and power calculations for additive interactions. Epidemiologic Methods, 1:159–188. Google Scholar

VanderWeele, T. J. (2012b). Interaction tests under exposure misclassification. Biometrika, 99:502–508. CrossrefGoogle Scholar

VanderWeele, T. J. (2013). Reconsidering the denominator of the attributable proportion for additive interaction. European Journal of Epidemiology, 28:779–784. CrossrefGoogle Scholar

VanderWeele, T. J. (2014a). A unification of mediation and interaction: A four-way decomposition. Epidemiology, in press. Google Scholar

VanderWeele, T. J. (2014b). Explanation in Causal Inference: Methods for Mediation and Interaction. Oxford University Press, in press. Google Scholar

VanderWeele, T. J. and Knol, M. J. (2011a). The interpretation of subgroup analyses in randomized trials: Heterogeneity versus secondary interventions. Annals of Internal Medicine, 154:680–683. CrossrefGoogle Scholar

VanderWeele, T. J. and Knol, M. J. (2011b). Remarks on antagonism. American Journal of Epidemiology, 173:1140–1147. CrossrefGoogle Scholar

VanderWeele, T. J., Mukherjee, B., and Chen, J. (2012). Sensitivity analysis for interactions under unmeasured confounding. Statistics in Medicine, 31:2552–2564.PubMedCrossrefGoogle Scholar

VanderWeele, T. J. and Richardson, T. S. (2012). General theory for interactions in sufficient cause models with dichotomous exposures. Annals of Statistics, 40:2128–2161. CrossrefGoogle Scholar

VanderWeele, T. J. and Robins, J. M. (2007a). The identification of synergism in the SCC framework. Epidemiology, 18:329–339. CrossrefGoogle Scholar

VanderWeele, T. J. and Robins, J. M. (2007b). Four types of effect modification – A classification based on directed acyclic graphs. Epidemiology, 18:561–568. CrossrefGoogle Scholar

VanderWeele, T. J. and Robins, J. M. (2008). Empirical and counterfactual conditions for sufficient cause interactions. Biometrika, 95:49–61. CrossrefGoogle Scholar

VanderWeele, T. J. and Tchetgen Tchetgen, E. J. (2014). Attributing effects to interactions. Epidemiology, in press. Google Scholar

VanderWeele, T. J. and Vansteelandt, S. (2011). A weighting approach to causal effects and additive interaction in case–control studies: Marginal structural linear odds models. American Journal of Epidemiology, 174:1197–1203. CrossrefPubMedGoogle Scholar

VanderWeele, T. J., Vansteelandt, S., and Robins, J. M. (2010). Marginal structural models for sufficient cause interactions. American Journal of Epidemiology, 171:506–514. CrossrefPubMedGoogle Scholar

Vansteelandt, S., VanderWeele, T. J., and Robins, J. M. (2012). Semiparametric inference for sufficient cause interactions. Journal of the Royal Statistical Society, Series B, 74:223–244. CrossrefGoogle Scholar

Vansteelandt, S., VanderWeele, T. J., Tchetgen, E. J., and Robins, J. M. (2008). Multiply robust inference for statistical interactions. Journal of the American Statistical Association, 103:1693–1704. PubMedCrossrefGoogle Scholar

Walter S. D., and Holford, T. R. (1978). Additive, multiplicative, and other models for disease risks. American Journal of Epidemiology, 108:341–346. PubMedGoogle Scholar

Weinberg, C. R., Shi, M., and Umbach, D. M. (2011). A sibling-augmented case-only approach for assessing multiplicative gene–environment interactions. American Journal of Epidemiology, 174:1183–1189. CrossrefPubMedGoogle Scholar

Yang, Q., Khoury, M. J., and Flanders, W. D. (1997). Sample size requirements in case-only designs to detect gene–environment interaction. American Journal of Epidemiology, 146:713–719. PubMedCrossrefGoogle Scholar

Yang, Q., Khoury, M. J., Sun, F., and Flanders, W. D. (1999). Case-only design to measure gene–gene interaction. Epidemiology, 10:167–170. CrossrefPubMedGoogle Scholar

Yelland, L. N., Salter, A. B., and Ryan, P. (2011). Relative risk estimation in randomized controlled trials: a comparison of methods for independent observations. International Journal of Biostatistics, 7(1):1–31. Google Scholar

Zhang, L., Mukherjee, B., Ghosh, M., Gruber, S., and Moreno, V. (2008). Accounting for error due to misclassification of exposures in case–control studies of gene–environment interaction. Statistics in Medicine, 27:2756–2783. CrossrefPubMedGoogle Scholar

Zhao, L., Tian, L., Cai, T., Claggett, B., and Wei, L. J. (2013). Effectively selecting a target population for a future comparative study. Journal of the American Statistical Association, 108:527–539. PubMedCrossrefGoogle Scholar

Zou, G. Y. (2008). On the estimation of additive interaction by use of the four-by-two table and beyond. American Journal of Epidemiology, 168:212–224. PubMedCrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.