Ahlbom, A., and Alfredsson, L. (2005). Interaction: A word with two meanings creates confusion. European Journal of Epidemiology, 20(7):563–564. PubMedCrossrefGoogle Scholar

Andersen, P. K., and Keiding, N. (2012). Interpretability and importance of functionals in competing risks and multistate models. Statistics in Medicine, 31(11-12):1074–1088. CrossrefPubMedWeb of ScienceGoogle Scholar

Andersen, P. K., and Perme, M. P. (2010). Pseudo-observations in survival analysis. Statistical Methods in Medical Research, 19(1):71–99. Web of SciencePubMedCrossrefGoogle Scholar

Andersen, P. K., and Skrondal, A. (2015). A competing risks approach to “biologic” interaction. Lifetime Data Analysis, 21(2):300–314. Web of ScienceCrossrefPubMedGoogle Scholar

Andersen, P. K., Syriopoulou, E., and Parner, E. T. (2017). Causal inference in survival analysis using pseudo-observations. Statistics in Medicine, 36(17):2669–2681. Web of ScienceCrossrefPubMedGoogle Scholar

Bellavia, A., Bottai, M., and Orsini, N. (2016). Evaluating additive interaction using survival percentiles. Epidemiology, 27(3):360–364. CrossrefWeb of SciencePubMedGoogle Scholar

Cleves, M., W. W. Gould, R. G. Gutierrez, and Y Marchenko. 2010. *An Introduction to Survival Analysis Using Stata*, College Station, Texas: Stata Press Google Scholar

Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society Series B-Statistical Methodology, 34(2):187–220. Google Scholar

Fine, J. P., and Gray, R. J. (1999). A proportional hazards model for the subdistribution of a competing risk. Journal of the American Statistical Association, 94(446):496–509. CrossrefGoogle Scholar

Greenland, S., Lash, L. T., and Rothman, K. J. (2008). Concepts of Interaction. Modern Epidemiology. Philadelphia, USA: Lippincott, Williams & Wilkins. 71–83. Google Scholar

Hansen, S. N., Andersen, P. K., and Parner, E. T. (2014). Events per variable for risk differences and relative risks using pseudo-observations. Lifetime Data Analysis, 20(4):584–598. CrossrefPubMedWeb of ScienceGoogle Scholar

Harrell, F. E. (2001). Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis. New York: Springer. 53–85. Google Scholar

Lawlor, D. A. (2011). Biological interaction: Time to drop the term?. Epidemiology, 22(2):148–150. Web of SciencePubMedCrossrefGoogle Scholar

Li, R., and Chambless, L. (2007). Test for additive interaction in proportional hazards models. Annals of Epidemiology, 17(3):227–236. CrossrefPubMedWeb of ScienceGoogle Scholar

Martinussen, T., and T. H Scheike. 2006. *Dynamic Regression Models for Survival Data*, New York: Springer Google Scholar

Mortensen, L. M., Lundbye-Christensen, S., Schmidt, E. B., Calder, P. C., Schierup, M. H., Tjonneland, A., Parner, E. T., and Overvad, K. (2017). Long-chain n-3 and n-6 polyunsaturated fatty acids and risk of atrial fibrillation: Results from a Danish cohort study. PLoS One, 12(12):e0190262. Web of ScienceGoogle Scholar

Overgaard, M., Andersen, P. K., and Parner, E. T. (2015). Regression analysis of censored data using pseudo-observations: An update. The Stata Journal, 15(3):809–821. CrossrefGoogle Scholar

Overgaard, M., Parner, E. T., and Pedersen, J. (2017). Asymptotic theory of generalized estimating equations based on Jack-Knife pseudo-observations. Annals of Statistics, 45(5):1988–2015. CrossrefWeb of ScienceGoogle Scholar

Parner, E. T., and Andersen, P. K. (2010). Regression analysis of censored data using pseudo-observations. The Stata Journal, 10(3):408–422. CrossrefGoogle Scholar

Rod, N. H., Lange, T., Andersen, I., Marott, J. L., and Diderichsen, F. (2012). Additive interaction in survival analysis: Use of the additive hazards model. Epidemiology, 23(5):733–737. CrossrefWeb of SciencePubMedGoogle Scholar

Rothman, K. J., Greenland, S., and Walker, A. M. (1980). Concepts of interaction. American Journal of Epidemiology, 112(4):467–470. CrossrefPubMedGoogle Scholar

StataCorp. (2013). Stata Statistical Software: Release 13. College Station, TX: StataCorp LP. Google Scholar

Tjonneland, A., Olsen, A., Boll, K., Stripp, C., Christensen, J., Engholm, G., and Overvad, K. (2007). Study design, exposure variables, and socioeconomic determinants of participation in diet, cancer and health: A population-based prospective cohort study of 57,053 men and women in Denmark. Scandinavian Journal of Public Health, 35(4):432–441. CrossrefWeb of ScienceGoogle Scholar

VanderWeele, T. J. (2009). On the distinction between interaction and effect modification. Epidemiology, 20(6):863–871. PubMedCrossrefWeb of ScienceGoogle Scholar

VanderWeele, T. J. (2011). Causal interactions in the proportional hazards model. Epidemiology, 22(5):713–717. CrossrefPubMedWeb of ScienceGoogle Scholar

VanderWeele, T. J., and Knol, M. J. (2014). A tutorial on interaction. Epidemiologic Methods, 3(1):33–72. Google Scholar

Wu, N., Xu, B., Xiang, Y., Wu, L., Zhang, Y., Ma, X., Tong, S., Shu, M., Song, Z., Li, Y., and Zhong, L. (2013). Association of inflammatory factors with occurrence and recurrence of atrial fibrillation: A meta-analysis. International Journal of Cardiology, 169(1):62–72. PubMedCrossrefWeb of ScienceGoogle Scholar

Xu, R., and O'Quigley, J. (2000). Estimating average regression effect under non-proportional hazards. Biostatistics, 1(4):423–439. CrossrefPubMedGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.