Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Engineering

formerly Central European Journal of Engineering

Editor-in-Chief: Ritter, William

1 Issue per year


CiteScore 2017: 0.70

SCImago Journal Rank (SJR) 2017: 0.211
Source Normalized Impact per Paper (SNIP) 2017: 0.787

Open Access
Online
ISSN
2391-5439
See all formats and pricing
More options …

A literature review on computational models for laminated composite and sandwich panels

Ireneusz Kreja
  • Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233, Gdańsk, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-03-18 | DOI: https://doi.org/10.2478/s13531-011-0005-x

Abstract

The present paper is devoted to a state-of-the-art review on the computational treatment of laminated composite and sandwich panels. Over two hundred texts have been included in the survey with the focus put on theoretical models for multilayered plates and shells, and FEM implementation of various computational concepts. As a result of the review, one could notice a lack of a single numerical model capable for a universal representation of all layered composite and sandwich panels. Usually, with the increase of the range of rotations considered in the particular model, one can observe the decrease of the degree of complexity of the through-the-thickness representation of deformation profiles.

Keywords: Composite laminates; Sandwich panels; Multi-layered shells; Computational models; Finite elements; Literature Survey

  • [1] Jones R. M., Mechanics of composite materials, Second Editions, Taylor & Francis, Inc., Philadelphia, PA, 1999 Google Scholar

  • [2] Vinson J. R., Chou T.-W., Composite Materials and Their Use in Structures, Applied Science Publishers Ltd, London, 1975 Google Scholar

  • [3] Vasiliev V. V., Morozov E. V., Mechanics and Analysis of Composite Materials, Elsevier Science Ltd, Oxford 2001 Google Scholar

  • [4] Halle D. K., Kelly A., Strength of fibrous composite materials, Annual Review of Materials Science 2, 1972, 405–462 CrossrefGoogle Scholar

  • [5] Chou T.-W., Kelly A., Mechanical properties of composites, Annual Review of Materials Science 10, 1980, 22–59 Google Scholar

  • [6] Tong L., Mouritz A. P., Bannister M. K., 3D Fibre Reinforced Polymer Composites, Elsevier Science Ltd., Oxford 2002 Google Scholar

  • [7] Librescu L., Hause T., Recent developments in the modeling and behavior of advanced sandwich constructions: a survey, Composite Structures 48, 2000, 1–17 CrossrefGoogle Scholar

  • [8] Hohe J., Becker W., Effective stress-strain relations for two-dimensional cellular sandwich cores: Homogenization, material models, and properties, Applied Mechanics Review 55, 2002, 61–87 Google Scholar

  • [9] Hohe J., Librescu L., Advances in the Structural Modeling of Elastic Sandwich Panels, Mechanics of Advanced Materials & Structures 11, 2004, 395–424 Google Scholar

  • [10] Reddy J.N., On laminated composite plates with integrated sensors and actuators, Engineering Structures 21, 1999, 568–593 CrossrefGoogle Scholar

  • [11] Reddy J.N., Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, Boca Raton, FL, Second Edition, 2004 Google Scholar

  • [12] Hachenberg D., The Role of Advanced Numerical Methods in the Design and Certification of Future Composite Aircraft Structures, WCCM V: Proceedings of the Fifth World Congress on Computational Mechanics, July 7–12, 2002, Vienna, Austria, H.A. Mang, F.G. Rammerstorfer & J. Eberhardsteiner (eds.), CD-ROM, Vienna 2002 Google Scholar

  • [13] Guz A. N. (ed.), Micromechanics of composite materials: Focus on Ukrainian Research, Applied Mechanics Review 45, 1992, 13–101 Google Scholar

  • [14] Pagano N. J., Yuan, F. G., The significance of effective modulus theory (homogenization) in composite laminate mechanics, Composites Science and Technology 60, 2000, 2471–2488 CrossrefGoogle Scholar

  • [15] Takano N., Ohnishi Y., Zako M., Nishiyabu K., The formulation of homogenization method applied to large deformation problem for composite materials, Int. Journal of Solids & Structures 37, 2000, 6517–6535 Google Scholar

  • [16] Schmauder S., Computational Mechanics, Annual Review of Materials Research 32, 2002, 437–465 CrossrefGoogle Scholar

  • [17] Pahr D. H., Rammerstorfer F. G., A fast multi-scale analyzing tool for the investigation of perforated laminates, Computers & Structures 82, 2004, 227–239 Google Scholar

  • [18] Ladevéze P., Multiscale Modeling and Computational Strategies for Composites, WCCM V: Proceedings of the Fifth World Congress on Computational Mechanics, July 7–12, 2002, Vienna, Austria, H.A. Mang, F.G. Rammerstorfer & J. Eberhardsteiner (eds.), CD-ROM, Vienna 2002 Google Scholar

  • [19] Böhm H. J. (Ed.), Mechanics of Microstructured Materials, CISM Courses and Lectures No. 464, Springer-Verlag, Vienna 2004 Google Scholar

  • [20] Zhang W. C., Evans K. E., Numerical prediction of the mechanical properties of anisotropic composite materials, Computers & Structures 29, 1988, 413–422 Google Scholar

  • [21] Noor A. K. & Burton W. S., Assessment of computational models for multilayered composite shells, Applied Mechanics Reviews 43, 1990, 67–97 CrossrefGoogle Scholar

  • [22] Kulikov G. M., Non-linear analysis of multilayered shells under initial stress, Int. Journal of Non-Linear Mechanics 36, 2001, 323–334 Google Scholar

  • [23] Carrera E., Developments, ideas, and evaluations based upon Reissner’s Mixed Variational Theorem in the modeling of multilayered plates and shells, Applied Mechanics Reviews 54, 2001, 301–329 CrossrefGoogle Scholar

  • [24] Reddy J. N., On refined computational models of composite laminates, Int. Journal for Numerical Methods in Engineering 27, 1989, 361–382 Google Scholar

  • [25] Rohwer K., Friedrichs S., Wehmeyer C., Analyzing laminated structures from fibre-reinforced composite material — an assessment, Technische Mechanik 25, 2005, 59–79 Google Scholar

  • [26] Başar Y., Ding Y., Interlaminar stress analysis of composites: layer-wise shell finite elements including transverse strains, Composites Engineering 5, 1995, 485–499 CrossrefGoogle Scholar

  • [27] Carrera E., An assessment of mixed and classical theories on global and local response of multilayered orthotropic plates, Composite Structures 50, 2000, 183–198 CrossrefGoogle Scholar

  • [28] Carrera E., Demasi L., Classical and advanced multilayered plate elements based upon PVD and RMVT. Part 1: Derivation of finite element matrices, Int. Journal for Numerical Methods in Engineering 55, 2002, 191–231 Google Scholar

  • [29] Carrera E., Demasi, L., Classical and advanced multilayered plate elements based upon PVD and RMVT. Part 2: Numerical implementations, Int. Journal for Numerical Methods in Engineering 55, 2002, 253–291 Google Scholar

  • [30] Chen C.-M., Kikuchi N., Farzad R.-A., An enhanced asymptotic homogenization method of the static and dynamics of elastic composite laminates, Computers & Structures 82, 2004, 373–382 Google Scholar

  • [31] Lewinsk, T., On recent developments in the homogenization theory of elastic plates and their application to optimal design: Part I, Structural Optimization 6, 1993, 59–64 Google Scholar

  • [32] Rabczuk T., Kim J.Y., Samaniego E., Belytschko T., Homogenization of sandwich structures, Int. Journal for Numerical Methods in Engineering 61, 2004, 1009–1027 Google Scholar

  • [33] Tanov R. and Tabiei A., A note on finite element implementation of sandwich shell homogenization, Int. Journal for Numerical Methods in Engineering 48, 2000, 467–473 Google Scholar

  • [34] Ambartsumyan S. A., Theory of Anisotropic Plates, Technomic Publishing Co., Inc., Stamford, 1970 Google Scholar

  • [35] Sun C.T., Chin, H., Analysis of asymmetric composite laminates, AIAA Journal 26, 1988, 714–718 CrossrefGoogle Scholar

  • [36] Saigal S., Kapania R. K., Yang T. Y., Geometrically nonlinear finite element analysis of imperfect laminated shells, Journal Composite Materials 20, 1986, 197–214 Google Scholar

  • [37] Whitney J. M., Pagano, N. J., Shear deformation in heterogeneous anisotropic plates, Journal of Applied Mechanics, Trans. ASME 37, 1970, 1031–1036 CrossrefGoogle Scholar

  • [38] Dong S. B., Tso F. K. W., On a laminated orthotropic shell theory including transverse shear deformation, Journal of Applied Mechanics, Trans. ASME 39, 1972, 1091–1096 CrossrefGoogle Scholar

  • [39] Reddy J. N., Arciniega R. A., Shear deformation plate and shell theories: From Stavsky to Present, Mechanics of Advanced Materials and Structures 11, 2004, 535–582 Google Scholar

  • [40] Ghugal Y. M., Shimpi R. P., A review of refined shear deformation theories of isotropic and anisotropic laminated plates, Journal of Reinforced Plastics and Composites 21, 2002, 775–813 Google Scholar

  • [41] Reissner E., Small bending and stretching of sandwich-type shells, NACA Report No. 975, 1950, 483–508 Google Scholar

  • [42] Chandrashekhara K., Pavan Kumar D. V. T. G., Assessment of shell theories for the static analysis of cross-ply laminated circular cylindrical shells, Thin-Walled Structures 22, 1995, 291–318 Google Scholar

  • [43] Chandrashekhara K., Pavan Kumar D. V. T. G., Static response of composite circular cylindrical shells studied by different theories, Meccanica 33, 1998, 11–27 CrossrefGoogle Scholar

  • [44] Tarn J.-Q., Wang Y.-B., A refined asymptotic theory and computational model for multilayered composite plates, Computer Methods in Applied Mechanics & Engineering 145, 1997, 167–184 Google Scholar

  • [45] Reddy J. N., Chandrashekhara K., Nonlinear analysis of laminated shells including transverse shear strains, AIAA Journal 23, 1985, 440–441 CrossrefGoogle Scholar

  • [46] Schmidt R., Reddy J. N., A refined small strain and moderate rotation theory of elastic anisotropic shells, Journal of Applied Mechanics, Trans. ASME 55, 1988, 611–617 CrossrefGoogle Scholar

  • [47] Palmerio A. F., Reddy J. N., Schmidt R., On a moderate rotation theory of elastic anisotropic shells — Part 1. Theory, Int. Journal of Non-Linear Mechanics 25, 1990, 687–700 Google Scholar

  • [48] Kreja I., Schmidt R., Reddy J. N., Finite elements based on a first-order shear deformation moderate rotation shell theory with applications to the analysis of composite structures, Int. Journal Non-Linear Mechanics 32, 1997, 1123–1142 Google Scholar

  • [49] Whitney J. M., Shear correction factors for orthotropic laminates under static load, Journal of Applied Mechanics, Trans. ASME 40, 1973, 302–303 CrossrefGoogle Scholar

  • [50] Wittrick W. H., Analytical, three-dimensional elasticity solutions to some plate problems, and some observations on Mindlin’s plate theory, Int. Journal of Solids & Structures 23, 1987, 441–464 Google Scholar

  • [51] Vlachoutsis S., Shear correction factors for plates and shells, Int. Journal for Numerical Methods in Engineering 33, 1992, 1537–1552 Google Scholar

  • [52] Jemielita G., Coefficients of shear correction in transversely nonhomogeneous moderately thick plates, Journal of Theoretical and Applied Mechanics (Polish Society of Theoretical and Applied Mechanics) 40, 2002, 73–84 Google Scholar

  • [53] Noor A. K., Peters J. M., A posteriori estimates for shear correction factors in multilayered composite cylinders, Journal of Engineering Mechanics ASCE 115, 1988, 1225–1244 Google Scholar

  • [54] Sze K. Y., He L.-W., Cheung Y. K., Predictorcorrector procedures for analysis of laminated plates using standard Mindlin finite element models, Composite Structures 50, 2000, 171–182 CrossrefGoogle Scholar

  • [55] Auricchio F., Sacco E., Partial-mixed formulation and refined models for the analysis of composite laminates within an FSDT, Composite Structures 46, 1999, 103–113 CrossrefGoogle Scholar

  • [56] Auricchio F., Sacco E., A mixed-enhanced finite-element for the analysis of laminated composite plates, Int. Journal for Numerical Methods in Engineering 44, 1999, 1481–1504 Google Scholar

  • [57] Pai P. F., A new look at shear correction factors and warping functions of anisotropic laminates, Int. Journal of Solids & Structures 32, 1995, 2295–2313 Google Scholar

  • [58] Rolfes R., Rohwer K., Improved transverse shear stresses in composite finite elements based on First Order Shear Deformation Theory, Int. Journal for Numerical Methods in Engineering 40, 1997, 51–60 Google Scholar

  • [59] MSC/NASTRAN Encyclopedia for Version 69, Mac Neal-Schwendler Corp., 1996 Google Scholar

  • [60] Altenbach H., An alternative determination of transverse shear stiffnesses for sandwich and laminated plates, Int. Journal of Solids & Structures 37, 2000, 3503–3520 Google Scholar

  • [61] Tanov R., Tabiei A., A simple correction to the first-order shear deformation shell finite element formulations, Finite Elements in Analysis and Design 35, 2000, 189–197 Google Scholar

  • [62] Reissner E., A consistent treatment of transverse shear deformations in laminated anisotropic plates, AIAA Journal 10, 1972, 716–718 CrossrefGoogle Scholar

  • [63] Fares M. E., Youssif Y. G., A refined equivalent single-layer model of geometrically non-linear doubly curved layered shells using mixed variational approach, Int. Journal Non-Linear Mechanics 36, 2001, 117–124 Google Scholar

  • [64] Fares M. E., Zenkour A. M., El-Marghany M. Kh., Non-linear thermal effects on the bending response of cross-ply laminated plates using refined first-order theory, Composite Structures 49, 2000, 257–267 CrossrefGoogle Scholar

  • [65] Auricchio F., Sacco E., Refined First-Order Shear Deformation Theory models for composite laminates, Journal of Applied Mechanics, Trans. ASME 70, 2003, 381–390 CrossrefGoogle Scholar

  • [66] Qi Y., Knight Jr. N. F., A refined first-order shear deformation theory and its justification by plane-strain bending problem of laminated plates, Int. Journal of Solids & Structures 33, 1996, 49–64 Google Scholar

  • [67] Knight Jr. N. F., Qi, Y., On a consistent first-order shear deformation theory for laminated plates, Composites, Part B 28B, 1997, 397–405. Google Scholar

  • [68] Reddy J. N., A simple higher-order theory for laminated composite plates, Journal of Applied Mechanics, Trans. ASME 51, 1984, 745–752 CrossrefGoogle Scholar

  • [69] Khdeir A. A., Reddy J. N., Librescu L., Analytical solution of a refined shear deformation theory for rectangular composite plates, Int. Journal of Solids & Structures 23, 1987, 1447–1463 Google Scholar

  • [70] Phan N. D., Reddy J. N., Analysis of laminated composite plates using a higher-order shear deformation theory, Int. Journal for Numerical Methods in Engineering 21, 1985, 2201–2219. Google Scholar

  • [71] Reddy J. N., On the generalization of displacement-based laminate theories, Applied Mechanics Reviews 42, 1989, S213–S222 CrossrefGoogle Scholar

  • [72] Reddy J. N., Liu, C. F., A higher-order shear deformation theory of laminated elastic shells, Int. Journal of Engineering Sciences 23, 1985, 669–683 Google Scholar

  • [73] Bose P., Reddy J. N., Analysis of composite plates using various plate theories Part 1: Formulation and Analytical Solutions, Structural Engineering & Mechanics 6, 1998, 583–612 Google Scholar

  • [74] Reddy J. N., A general non-linear third-order theory of plates with moderate thickness, Int. Journal of Non-Linear Mechanics 25, 1990, 677–686 Google Scholar

  • [75] Dennis S. T., A Galerkin solution to geometrically nonlinear laminated shallow shell equations, Computers & Structures 63, 1997, 859–874 Google Scholar

  • [76] Simitses G. J., Buckling of moderately thick laminated cylindrical shells: A review, Composites Part B 27B, 1996, 581–587 Google Scholar

  • [77] Başar Y., Finite-rotation theories for composite laminates, Acta Mechanica 98, 1993, 159–176 CrossrefGoogle Scholar

  • [78] Başar Y., Ding Y., Schultz R., Refined shear-deformation models for composite laminates with finite rotations, Int. Journal of Solids & Structures 30, 1993, 2611–2638 Google Scholar

  • [79] Balah M., Al-Ghamedy H. N., Finite element formulation of a third order laminated finite rotation shell element, Computers & Structures 80, 2002, 1975–1990 Google Scholar

  • [80] Simo J. C., Fox D. D., Rifai M. S., On a stress resultant geometrically exact shell model. Part III: Computational aspects of the nonlinear theory, Computer Methods in Applied Mechanics & Engineering 79, 1990, 21–70 Google Scholar

  • [81] Dennis S. T., Palazotto A. N., Transverse shear deformation in orthotropic cylindrical pressure vessels using a higher-order shear theory, AIAA Journal 27, 1989, 1441–1447 CrossrefGoogle Scholar

  • [82] Dennis S. T., Palazotto A. N., Large displacement and rotational formulation for laminated shells including parabolic transverse shear, Int. Journal of Non-Linear Mechanics 25, 1990, 67–85 Google Scholar

  • [83] Naboulsi S. K., Palazotto A. N., Non-linear staticdynamic finite element formulation for composite shells, Int. Journal of Non-Linear Mechanics 38, 2003, 87–110 Google Scholar

  • [84] Tsai C. T., Palazotto A. N., Dennis S. T., Largerotation snap-through buckling in laminated cylindrical panels, Finite Elements in Analysis and Design 9, 1991, 65–75 Google Scholar

  • [85] Sacco E., Reddy J.N., On first- and second-order moderate rotation theories of laminated plates, Int. Journal for Numerical Methods in Engineering 33, 1992, 1–17 Google Scholar

  • [86] Moita J. S., Mota Soares C. M., Mota Soares C. A., Buckling behaviour of laminated composite structures using a discrete higher-order displacement model, Composite Structures 35, 1996, 75–92 CrossrefGoogle Scholar

  • [87] Piskunov V. G., An iterative analytical theory in the mechanics of layered composite systems, Mechanics of Composite Materials 39, 2003, 1–16 Google Scholar

  • [88] Librescu L., Refined geometrically non-linear theories of anisotropic laminated shells, Quarterly of Applied Mathematics 45, 1987, 1–22 Google Scholar

  • [89] Pagano N. J., Hatfield S.J., Elastic behavior of multilayered bidirectional composites, AIAA Journal 10, 1972, 931–933 CrossrefGoogle Scholar

  • [90] Brank B., On composite shell models with piecewise linear warping function, Composite Structures 59, 2003, 163–171 CrossrefGoogle Scholar

  • [91] Brank B., Carrera E., A family of shear-deformable shell finite elements for composite structures, Computers & Structures 76, 2000, 287–297 Google Scholar

  • [92] Brank B., Carrera E., Multilayered shell finite element with interlaminar continuous stresses: a refinement of the Reissner-Mindlin formulation, Int. Journal for Numerical Methods in Engineering 48, 2000, 843–874 Google Scholar

  • [93] Carrera E., On the use of the Murakami’s zig-zag function in the modeling of layered plates and shells, Computers & Structures 82, 2004, 541–554 Google Scholar

  • [94] Carrera E., Historical review of zig-zag theories for multilayered plates and shells, Applied Mechanics Reviews 56, 2003, 287–308 CrossrefGoogle Scholar

  • [95] Di Sciuva M., An improved shear deformation theory of moderately thick multilayered anisotropic shells and plates, Journal of Applied Mechanics, Trans. ASME 54, 1987, 589–596 CrossrefGoogle Scholar

  • [96] Toledano A., Murakami H., A composite plate theory for arbitrary laminate configurations, Journal of Applied Mechanics, Trans. ASME 54, 1987, 181–189 CrossrefGoogle Scholar

  • [97] Di Sciuva M., A third-order triangular multilayered plate finite element with continuous interlaminar stresses, Int. Journal for Numerical Methods in Engineering 38, 1995, 1–26 Google Scholar

  • [98] Di S., Rothert H., A solution of laminated cylindrical shell using an unconstrained third-order theory, Composite Structures 32, 1995, 667–680 CrossrefGoogle Scholar

  • [99] Di S., Rothert H., Solution of laminated cylindrical shell using an unconstrained third-order theory, Computers & Structures 69, 1998, 291–303 Google Scholar

  • [100] Lee K. H., Senthilnathan N. R., Lim S. P., Chow T., An improved zig-zag model for the bending of laminated composite plates, Composite Structures 15, 1990, 137–148 CrossrefGoogle Scholar

  • [101] Toledano A., Murakami H., A High-Order Laminated Plate Theory with Improved In-Plane Responses, Int. Journal of Solids & Structures 23, 1987, 111–131 Google Scholar

  • [102] Carrera E., C0 Reissner-Mindlin multilayered plate elements including zig-zag and interlaminar stress continuity, Int. Journal for Numerical Methods in Engineering 39, 1996, 1797–1820 Google Scholar

  • [103] Savithri S., Varadan T. K., Large deflection analysis of laminated composite plates, Int. Journal Non-Linear Mechanics 28, 1993, 1–12 Google Scholar

  • [104] Librescu L., Schmidt R., Substantiation of a shear-deformable theory of anisotropic composite laminated shells accounting for the interlaminar continuity conditions, Int. Journal of Engineering Science 29, 1991, 669–683 CrossrefGoogle Scholar

  • [105] Schmidt R., Librescu L., Further results concerning the refined theory of anisotropic laminated composite plates, Journal of Engineering Mathematics 28, 1994, 407–425 CrossrefGoogle Scholar

  • [106] He L.-H., Non-linear theory of laminated shells accounting for continuity conditions of displacements and tractions at layer interfaces, Int. Journal of Mechanical Sciences 37, 1995, 161–173 Google Scholar

  • [107] Shu X.-P., A refined theory of laminated shells with higher-order transverse shear deformation, Int. Journal of Solids & Structures 34, 1997, 673–683 Google Scholar

  • [108] Lee K. H., Cao L., A predictor-corrector zig-zag model for the bending of laminated composite plates, Int. Journal of Solids & Structures 33, 1996, 879–897 Google Scholar

  • [109] Soldatos K. P., Watson P., A method for improving the stress analysis performance of one- and two-dimensional theories for laminated composites, Acta Mechanica 123, 1997, 163–186 CrossrefGoogle Scholar

  • [110] Cho M., Kim K.-O., Kim M.-H., Efficient higher-order shell theory for laminated composites, Composite Structures 34, 1996, 197–212 CrossrefGoogle Scholar

  • [111] Idibi A., Karama M., Touratier, M., Comparison of various laminated plate theories, Composite Structures 37, 1997, 173–184 Google Scholar

  • [112] Fernande, A., A mixed formulation for elastic multilayer plates, Computes Rendus Mecanique 331, 2003, 337–342 Google Scholar

  • [113] Arya H., Shimpi R. P., Naik N. K., A zigzag model for laminated composite beams, Composite Structures 56, 2002, 21–24 CrossrefGoogle Scholar

  • [114] Hassis H., A high-order theory for static-dynamic analysis of laminated plates using a special warping model, European Journal of Mechanics A / Solids 21, 2002, 323–332 Google Scholar

  • [115] Sutyrin V. G., Hodges D. H., On asymptotically correct linear laminated plate theory, Int. Journal of Solids & Structures 33, 1996, 3649–3671 Google Scholar

  • [116] Yu W., Hodges D. H., A geometrically nonlinear shear deformation theory for composite shells, Journal of Applied Mechanics, Trans. ASME 71, 2004, 1–9 CrossrefGoogle Scholar

  • [117] Yu W., Hodges D. H., Volovoi V. V., Asymptotic generalization of Reissner-Mindlin theory: accurate three-dimensional recovery for composite shells, Computer Methods in Applied Mechanics & Engineering 191, 2002, 5087–5109 Google Scholar

  • [118] Kim J.-S., Cho, M., Enhanced First-Order Shear Deformation Theory for laminated and sandwich plates, Journal of Applied Mechanics, Trans. ASME 72, 2005, 809–817 CrossrefGoogle Scholar

  • [119] Ambartsumyan S. A., Contributions to the theory of anisotropic layered shells, Applied Mechanics Reviews 15, 1962, 245–249 Google Scholar

  • [120] Habip L. M., A survey of modern developments in the analysis of sandwich structures, Applied Mechanics Reviews 18, 1965, 93–98 Google Scholar

  • [121] Mau S. T., A refined laminated plate theory, Journal of Applied Mechanics, Trans. ASME 40, 1973, 606–607 CrossrefGoogle Scholar

  • [122] Pagano N. J., Stress fields in composite laminates, Int. Journal of Solids & Structures 14, 1978, 385–400 Google Scholar

  • [123] Mawenya A. S., Davies J. D., Finite element bending analysis of multilayer plates, Int. Journal for Numerical Methods in Engineering 8, 1974, 215–225 Google Scholar

  • [124] Chaudhuri R. A., Seide P., An approximate method for prediction of transverse shear stresses in a laminated shell, Int. Journal of Solids & Structures 23, 1987, 1145–1161 Google Scholar

  • [125] Chaudhuri R. A., Analysis of laminated shear-flexible angle-ply plates, Composite Structures 67, 2005, 71–84 CrossrefGoogle Scholar

  • [126] Noor A. K., Burton W. S., Peters J. M., Assessment of computational models for multilayered composite cylinders, Int. Journal of Solids & Structures 27, 1991, 1269–1286 Google Scholar

  • [127] Huttelmaier H. P., Epstein M., A finite element formulation for multilayered and thick shells, Computers & Structures 21, 1985, 1181–1185 Google Scholar

  • [128] Masud A., Panahandeh M., Finite-Element Formulation for Analysis of Laminated Composites, Journal of Engineering Mechanics ASCE 125, 1999, 1115–1124 CrossrefGoogle Scholar

  • [129] Pinsky P. M., Kim K. O., A multi-director formulation for nonlinear elastic-viscoelastic layered shells, Computers & Structures 24, 1986, 901–913 Google Scholar

  • [130] Braun M., Bischoff M., Ramm E., Nonlinear 3-dimensional analysis of composite and laminate plate and shell structures, Recent Developments in Finite Element Analysis, T. J. R. Hughes, E. Oñate & O. C. Zienkiewicz (eds.), CIMNE, Barcelona, 1994, 215–224 Google Scholar

  • [131] Wagner W., Gruttmann F., FE-Modeling of Fiber Reinforced Polymer Structures, WCCM V: Proceedings of the Fifth World Congress on Computational Mechanics, July 7–12, 2002, Vienna, Austria, H.A. Mang, F.G. Rammerstorfer & J. Eberhardsteiner (eds.), CD-ROM, Vienna 2002 Google Scholar

  • [132] Krätzig W. B., ’Best’ transverse shearing and stretching shell theory for nonlinear finite element simulations, Computer Methods in Applied Mechanics & Engineering 103, 1993, 135–160 Google Scholar

  • [133] Başar Y., Itskov M., Eckstein A., Composite laminates: nonlinear interlaminar stress analysis by multi-layer shell elements, Computer Methods in Applied Mechanics & Engineering 185, 2000, 367–397 Google Scholar

  • [134] Krätzig W. B., Jun D., Multi-layer multi-director concepts for D-adaptivity in shell theory, Computers & Structures 80, 2002, 719–734 Google Scholar

  • [135] Krätzig W. B., Jun D., On ‘best’ shell models — From classical shells, degenerated and multi-layered concepts to 3D, Archive of Applied Mechanics 73, 2003, 1–25 CrossrefGoogle Scholar

  • [136] Naghdi P. M., Finite deformations of elastic rods and shells, Finite Elasticity, Proceedings of the IUTAM Symposium, Lehigh University, Bethlehem, PA, USA, August 10–15, 1980, D.E. Carlson & R. T. Shield (eds.), Martinus Nijhoff Publishers, The Hague/Boston/London, 1982, 47–103 Google Scholar

  • [137] Cho Y.B., Averill R.C., First-order zig-zag sublaminate plate theory and finite element model for laminated composite and sandwich panels, Composite Structures 50, 2000, 1–15 CrossrefGoogle Scholar

  • [138] Barbero E. J., Reddy J. N., Teply J., An accurate determination of stresses in thick laminates using a generalized plate theory, Int. Journal for Numerical Methods in Engineering 29, 1990, 1–14 Google Scholar

  • [139] Gaudenzi P., Barboni R., Mannini A., A finite element evaluation of single-layer and multi-layer theories for the analysis of laminated plates, Composite Structures 30, 1995, 427–440 CrossrefGoogle Scholar

  • [140] Carrera E., Mixed layer-wise models for multilayered plates analysis, Composite Structures 43, 1998, 57–70 CrossrefGoogle Scholar

  • [141] Vu-Quoc L., Deng H., Tan X. G., Geometrically-exact sandwich shells: The static case, Computer Methods in Applied Mechanics & Engineering 189, 2000, 167–203 Google Scholar

  • [142] Gruttmann F., Wagner W., Coupling of 2D- and 3D-composite shell elements in linear and nonlinear applications, Computer Methods in Applied Mechanics & Engineering 129, 1996, 271–287 Google Scholar

  • [143] Williams T. O., Addessio F. L., A general theory for laminated plates with delaminations, Int. Journal of Solids & Structures 34, 1997, 2003–2024 Google Scholar

  • [144] Li X., Liu D., Generalized laminate theories based on double superposition hypothesis, Int. Journal for Numerical Methods in Engineering 40, 1997, 1197–1212 Google Scholar

  • [145] Pagano N.J., Exact Solutions for Composite Laminates in Cylindrical Bending, Journal of Composite Materials 3, 1969, 389–411 Google Scholar

  • [146] Pagano, N.J., Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates, Journal of Composite Materials 4, 1970, 20–34 Google Scholar

  • [147] Pagano N. J., Free edge stress fields in composite laminates, Int. Journal of Solids & Structures 14, 1978, 401–406 Google Scholar

  • [148] Bogdanovich A.E., Yushanov S.P., Threedimensional variational analysis of Pagano’s problems for laminated composite plates, Composites Science & Technology 60, 2000, 2407–2425 CrossrefGoogle Scholar

  • [149] Desai Y. M., Ramtekkar G. S., Shah A. H., A novel 3D mixed finite-element model for statics of angleply laminates, Int. Journal for Numerical Methods in Engineering 57, 2003, 1695–1716 Google Scholar

  • [150] Feng W., Hoa S. V., Partial hybrid finite elements for composite laminates, Finite Elements in Analysis and Design 30, 1998, 365–382 Google Scholar

  • [151] Kong J., Cheung Y.K., Three-dimensional finite element analysis of thick laminated plates, Computers & Structures 57, 1995, 1051–1062 Google Scholar

  • [152] Yu G., Guang-Yau T., Chaturvedi S., Adeli H., et al., A finite element approach to global-local modeling in composite laminate analysis, Computers & Structures 57, 1995, 1035–1044 Google Scholar

  • [153] Cen S., Yuqiu Long Y., Yao Z., A new hybrid-enhanced displacement-based element for the analysis of laminated composite plates, Computers & Structures 80, 2002, 819–833 Google Scholar

  • [154] Hossain S. J., Sinha P. K., Sheikh A. H., A finite element formulation for the analysis of laminated composite shells, Computers & Structures 82, 2004, 1623–1638 Google Scholar

  • [155] Alfano G., Auricchio F., Rosati L., Sacco E., MITC finite elements for laminated composite plates, Int. Journal for Numerical Methods in Engineering 50, 2001, 707–738 Google Scholar

  • [156] Carrera E., A priori vs. a posteriori evaluation of transverse stresses in multilayered orthotropic plates, Composite Structures 48, 2000, 245–260 CrossrefGoogle Scholar

  • [157] Das M., Barut A., Madenci E., Ambur D.R., Complete stress ?eld in sandwich panels with a new triangular ?nite element of single-layer theory, Computer Methods in Applied Mechanics & Engineering 194, 2005, 2969–3005 Google Scholar

  • [158] Cho M., Kim M.-H., A postprocess method using a displacement field of higher-order shell theory, Composite Structures 34, 1996, 185–196 CrossrefGoogle Scholar

  • [159] Cho M., Kim J.-S., A postprocess method for laminated shells with a doubly curved nine-noded finite element, Composites, Part B 31, 2000, 65–74 Google Scholar

  • [160] Wisniewski K., Schrefler B.A., On recovery of stresses for a multi-layered beam element, Engineering Computations 10, 1993, 563–569 CrossrefGoogle Scholar

  • [161] Galvanetto U., Pellegrino C., Schrefler B. A., A three-dimensional stress recovery procedure for composite materials, Computers & Structures 69, 1998, 567–575 Google Scholar

  • [162] Lee K., Lee S. W., A post-processing approach to determine transverse stresses in geometrically nonlinear composite and sandwich structures, Journal of Composite Materials 37, 2003, 2207–2224 Google Scholar

  • [163] Park B. C., Park J. W., Kim Y. H., Stress recovery in laminated composite and sandwich panels undergoing finite rotation, Composite Structures 59, 2003, 227–235. CrossrefGoogle Scholar

  • [164] Kant T., Swaminathan K., Estimation of transverse/ interlaminar stresses in laminated composites — a selective review and survey of current developments, Composite Structures 49, 2000, 65–75 CrossrefGoogle Scholar

  • [165] Hoff N. J., Bending and Buckling of Rectangular Sandwich Plates, NACA TN No. 2225, Washington 1950 Google Scholar

  • [166] Schmit Jr. L.A., Monforton G.R., Finite deflection Discrete Element Analysis of sandwich plates and cylindrical shells with laminated faces, AIAA Journal 8, 1970, 1454–1461 Google Scholar

  • [167] Lewinski T., On displacement-based theories of sandwich plates with soft core, Journal of Engineering Mathematics 25, 1991, 223–241 CrossrefGoogle Scholar

  • [168] Malcolm D. J., Glockner P. G., Nonlinear sandwich shell and Cosserat surface theory, Journal of Engineering Mechanics ASCE 98, 1972, 1183–1203 Google Scholar

  • [169] Glockner P. G., Malcolm D. J., Lagrangian formulation of sandwich shell theory, Journal of Engineering Mechanics ASCE 99, 1973, 445–456 Google Scholar

  • [170] Borsellino C., Calabrese L., Valenza A.: Experimental and numerical evaluation of sandwich composite structures, Composites Science & Technology 64, 2004, 1709–1715 CrossrefGoogle Scholar

  • [171] Burton W. S., Noor A. K., Assessment of computational models for sandwich panels and shells, Computer Methods in Applied Mechanics & Engineering 124, 1995, 125–151 Google Scholar

  • [172] Nettles A.T., Basic Mechanics of Laminated Composite Plates, NASA RP-1351, MSFC, Alabama 1994 Google Scholar

  • [173] Stockton S. L., Engineering and Design: Composite Materials for Civil Engineering Structures, Technical Letter No. 1110-2-548, U.S. Army Corps of Engineers Washington, DC 1997 Google Scholar

  • [174] Hu H.-T., Buckling analyses of fiber-composite laminate plates with material nonlinearity, Finite Elements in Analysis & Design 19, 1995, 169–179 Google Scholar

  • [175] Pai P. F., Palazotto A. N., Nonlinear displacement based finite element analysis of composite shells — A new total Lagrangian formulation, Int. Journal of Solids & Structures 32, 1995, 3047–3073 Google Scholar

  • [176] Wisnom M. R., The effect of fibre rotation in ± 45° tension tests on measured shear properties, Composites 26, 1995, 25–32 CrossrefGoogle Scholar

  • [177] Abu-Farsakh G.A., Barakat S.A., Al-Zoubi N.R., Effect of material nonlinearity in unidirectional composites on the behavior of beam structures, Int. Journal of Solids & Structures 37, 2000, 2673–2694 Google Scholar

  • [178] Woo K. S., Hong C. H., Basu P. K., Materially and geometrically nonlinear analysis of laminated anisotropic plates by p-version of FEM, Computers & Structures 81, 2003, 1653–1662 Google Scholar

  • [179] Kennedy T.C., Nonlinear viscoelastic analysis of composite plates and shells, Composite Structures 41, 1998, 265–272 CrossrefGoogle Scholar

  • [180] Kłosowski P., Woznica K., Numerical treatment of elasto viscoplastic shells in the range of moderate and large rotations, Computational Mechanics 34, 2004, 194–212 CrossrefGoogle Scholar

  • [181] Dvorak G. J., Composite materials: Inelastic behavior, damage, fatigue and fracture, Int. Journal of Solids & Structures 37, 2000, 155–170 Google Scholar

  • [182] Reddy J. N., Analysis of layered composite plates accounting for large deflections and transverse shear strains, Recent Advances in Nonlinear Computational Mechanics, E. Hinton, D. R. J. Owen & C. Taylor (eds.), Pineridge Press Ltd, Swansea 1982, 155–202 Google Scholar

  • [183] Carvelli V., Savoia M., Assessment of plate theories for multilayered angle-ply plates, Composite Structures 39, 1997, 197–207 CrossrefGoogle Scholar

  • [184] Jaunky N., Knight Jr. N.F., An assessment of shell theories for buckling of circular cylindrical laminated composite panels loaded in axial compression, Int. Journal of Solids and Structures 36, 1999, 3799–3820 Google Scholar

  • [185] Ferreira A. J. M., Fernandes A. A., A review of numerical methods for the analysis of composite and sandwich structures, Multimaterials Technologies — Solutions and Opportunities, DOGMA Conference in Utrecht, 24–25 October 2000, 71–76 Google Scholar

  • [186] Toorani M. H., Lakis A. A., General equations of anisotropic plates and shells including transverse shear deformations, rotary inertia and initial curvature effects, Journal of Sound and Vibration 237, 2000, 561–615 CrossrefGoogle Scholar

  • [187] Altenbach J., Altenbach H., Trends in engineering plate theories, Maintenance & Reliability, Polish Academy of Sciences Quarterly 4/2001, 2001, 21–30 Google Scholar

  • [188] Piskunov V. G., Rasskazov A. O., Evolution of the theory of laminated plates and shells, Int. Applied Mechanics (Plenum Publ. Corp.) 38, 2002, 135–166 CrossrefGoogle Scholar

  • [189] Qatu M. S., Recent research advances in the dynamic behavior of shells: 1989–2000, Part 1: Laminated composite shells, Applied Mechanics Reviews 55, 2002, 325–350 Google Scholar

  • [190] Hult J., Rammerstorfer F. G. (eds.), Engineering Mechanics of Fibre Reinforced Polymers and Composite Structures, CISM Courses and Lectures No. 348, Springer-Verlag, Vienna — New York 1994 Google Scholar

  • [191] Rao K. P., A rectangular laminated anisotropic shallow thin shell finite element, Computer Methods in Applied Mechanics & Engineering 194, 2005, 2285–2707 Google Scholar

  • [192] Reddy, J. N., Energy Principles and Variational Methods in Applied Mechanics, John Wiley & Sons, Ltd., New York 2002 Google Scholar

  • [193] Palmerio A. F., Reddy J. N., Schmidt R., On a moderate rotation theory of elastic anisotropic shells — Part 2. FE analysis, Int. Journal of Non-Linear Mechanics 25, 1990, 701–714 Google Scholar

  • [194] Kreja I., Schmidt R., Moderate Rotation Shell Theory in FEM application, Proceedings of Gdansk University of Technology Civil Eng series LI. 1995, 229–249 Google Scholar

  • [195] Panda S. C.. Natarajan R., Finite element analysis of laminated composite plates, Int. Journal of Non-Linear Mechanics 14, 1979, 69–79 Google Scholar

  • [196] Chang T. Y., Sawamiphakdi K., Large deformation analysis of laminated shells by finite element method, Computers & Structures 13, 1981, 331–340 Google Scholar

  • [197] Jun S. M., Hong C. S., Buckling behavior of laminated composite cylindrical panels under axial compression, Computers & Structures 29, 1988, 479–490 Google Scholar

  • [198] Kweon J. H., Hong C. S., An improved arc-length method for postbuckling analysis of composite cylindrical panels, Computers & Structures 53, 1994, 541–549 Google Scholar

  • [199] Wagner W., On formulation of geometrically nonlinear finite elements for fiber reinforced cylindrical shells, Statik und Dynamik in Konstruktiven Ingenieurbau, Festschrift Wilfried B. Krätzig, SFB 151 — Berichte nr 23, 1992, B3–B10 (in German) Google Scholar

  • [200] Ferreira A. J. M., Barbosa J. T., Buckling behaviour of composite shells, Composite Structures 50, 2000, 93–98. CrossrefGoogle Scholar

  • [201] Laschet G., Jeusette J.-P., Postbuckling finite element analysis of composite panels, Composite Structures 14, 1990, 35–48. CrossrefGoogle Scholar

  • [202] Rikards R., Chate A., Ozolinsh O., Analysis for buckling and vibrations of composite stiffened shells and plates, Composite Structures 51, 2001, 361–370. CrossrefGoogle Scholar

  • [203] Haas D. J., Lee W., A nine-node assumed-strain finite element for composite plates and shells, Computers & Structures 26, 1987, 445–452 Google Scholar

  • [204] Somashekar B.R., Prathap G., Ramesh Babu C., A field-consistent four nodded laminated anisotropic plate/shell element, Computers & Structures 25, 1987, 345–353 Google Scholar

  • [205] Groenwold A., Stander N., A 24 d.o.f. four-node flat shell finite element for general unsymmetric orthotropic layered composites, Engineering Computations 15, 1998, 518–543 CrossrefGoogle Scholar

  • [206] Dorninger K., Computational analysis of composite shells at large deformations, Computer Aided Design in Composite Material Technology, Proceedings of the Int. Conf. Southampton, 1988, C. A. Brebbia, W. P. de Wilde & W. R. Blain (eds.), Springer-Verlag, Berlin 1988, 7/66–7/75 Google Scholar

  • [207] Dorninger K., Rammerstorfer F. G., A layered composite shell element for elastic and thermoelastic stress and stability analysis at large deformations; Int. Journal for Numerical Methods in Engineering 30, 1990, 833–858 Google Scholar

  • [208] Ramm E., A plate/shell element for large deflections and rotations, Proceedings of US-Germany Symp., MIT Boston, August 1976, 264–293 Google Scholar

  • [209] Brank B., Peric D., Damjanic F. B., On implementation of a nonlinear four node shell finite element for thin multilayered elastic shells, Computational Mechanics 16, 1995, 341–359 CrossrefGoogle Scholar

  • [210] Kreja I., Critical examination of benchmark problems for large rotation analysis of laminated shells, Shell Structures: Theory and Applications, Proc. the 8th Conf. SSTA, Gdańsk — Jurata, 12–14 October 2005, W. Pietraszkiewicz & C. Szymczak (eds.), Taylor & Francis Group, London 2006, 481–485 Google Scholar

  • [211] Kreja I., Schmidt R., Large rotations in First Order Shear Deformation FE analysis of laminated shells, Int. Journal Non-Linear Mechanics 41, 2006, 101–123 Google Scholar

  • [212] Kim K. D., Buckling behaviour of composite panels using the finite element method, Composite Structures 36, 1996, 33–43 CrossrefGoogle Scholar

  • [213] Kim K. D., Voyiadjis G.Z., Non-linear finite element analysis of composite panels, Composites, Part B 30, 1999, 365–381 Google Scholar

  • [214] Kim K. D., Park T. H., An 8-node assumed strain element with explicit integration for isotropic and laminated composite shells, Structural Engineering & Mechanics 13, 2002, 387–410 Google Scholar

  • [215] Kim K. D., Lomboy G. R., Han S. C., A co-rotational 8-node assumed strain shell element for postbuckling analysis of laminated composite plates and shells, Computational Mechanics 30, 2003, 330–342 CrossrefGoogle Scholar

  • [216] Kim K.-D., Han S.-D., Suthasupradit S., Geometrically non-linear analysis of laminated composite structures using a 4-node co-rotational shell element with enhanced strains, International Journal of Non-Linear Mechanics 42, 2007, 864–881 Google Scholar

  • [217] Barut A., Madenci E., Tessler A., Nonlinear analysis of laminates through a Mindlin-type shear deformable shallow shell element, Computer Methods in Applied Mechanics & Engineering 143, 1997, 155–173 Google Scholar

  • [218] Han S. C., Kim K. D., Kanok-Nukulchai W., An element-based 9-node resultant shell element for large deformation analysis of laminated composite plates and shells, Structural Engineering and Mechanics 18, 2004, 807–829 Google Scholar

  • [219] Han S.-D., Tabiei A., Park W.-T., Geometrically nonlinear analysis of laminated composite thin shells using a modied First-order shear deformable element-based Lagrangian shell element, Composite Structures 82, 2008, 465–474 CrossrefGoogle Scholar

  • [220] Pai P. F., Total-Lagrangian formulation and finite-element analysis of highly flexible plates and shells, Mathematics and Mechanics of Solids 12, 2007, 213–250 Google Scholar

  • [221] Arciniega R.A., Reddy J.N., Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures, Computer Methods in Applied Mechanics and Engineering 196, 2007, 1048–1073 CrossrefGoogle Scholar

  • [222] Hashagen E., Schellekens J. C. J., de Borst R., Parisch H., Finite element procedure for modelling fibre metal laminates, Composite Structures 32, 1995, 255–264 CrossrefGoogle Scholar

  • [223] Parisch H., A continuum-based shell theory for nonlinear applications, Int. Journal for Numerical Methods in Engineering 38, 1995, 1855–1883 Google Scholar

  • [224] Kulikov G. M., Plotnikova S. V., Simple and effective elements based upon Timoshenko-Mindlin shell theory, Computer Methods in Applied Mechanics & Engineering 191, 2002, 1173–1187 Google Scholar

  • [225] Kulikov G. M., Plotnikova S. V., Non-linear strain-displacement equations exactly representing large rigid-body motions. Part I: Timoshenko-Mindlin shell theory, Computer Methods in Applied Mechanics & Engineering 192, 2003, 851–875 Google Scholar

  • [226] Zhang Y.X., Kim K.S., Two simple and efficient displacement-based quadrilateral plate elements for the analysis of composite laminated plates, Int. Journal for Numerical Methods in Engineering 61, 2004, 1771–1796 Google Scholar

  • [227] Sze K. Y., placeCityYao L.-Q., Pian T.H.H., An eighteen-node hybrid-stress solid-shell element for homogenous and laminated structures, Finite Elements in Analysis & Design 38, 2002, 353–374 Google Scholar

  • [228] Sze K. Y., Zheng S.-J., A stabilized hybrid-stress solid element for geometrically nonlinear homogeneous and laminated shell analyses, Computer Methods in Applied Mechanics & Engineering 191, 2002, 1945–1966 Google Scholar

  • [229] Bose P., Reddy J. N., Analysis of composite plates using various plate theories Part 2: Finite element model and numerical results, Structural Engineering & Mechanics 6, 1998, 727–746 Google Scholar

  • [230] Chaplin C. P., Palazotto A. N., The collapse of composite cylindrical panels with variousthickness using Finite Element Analysis, Computers & Structures 60, 1996, 797–815 Google Scholar

  • [231] Carrera E., C z0 requirements—models for the two dimensional analysis of multilayered structures, Composite Structures 37, 1997, 373–383. Google Scholar

  • [232] Carrera E., Parisch H., An evaluation of geometrical nonlinear effects of thin and moderately thick multilayered composite shells, Composite Structures 40, 1998, 11–24 Google Scholar

  • [233] Parisch H., An investigation of a finite rotation four node assumed strain shell element, Int. Journal for Numerical Methods in Engineering 31, 1991, 127–150 Google Scholar

  • [234] Rammerstorfer F. G., Dorninger K., Starlinger A., Composite and sandwich shells, in Nonlinear Analysis of Shells by Finite Elements, Rammerstorfer, F. G. (ed.), CISM Courses and Lectures No. 328, Springer-Verlag, placeCityVienna — placeState New York 1992, 131–194 Google Scholar

  • [235] Vu-Quoc L., Tan X.G., Optimal solid shells for nonlinear analyses of multilayer composites. I. Statics, Computer Methods in Applied Mechanics & Engineering 192, 2003, 975–1016 Google Scholar

  • [236] Kulikov G. M., Plotnikova S. V., Equivalent Single-Layer and Layerwise Shell Theories and Rigid-Body Motions — Part I: Foundations, Mechanics of Advanced Materials & Structures 12, 2005, 275–283 Google Scholar

  • [237] Kulikov G. M., Plotnikova S. V., Equivalent Single-Layer and Layerwise Shell Theories and Rigid-Body Motions — Part II: Computational Aspects, Mechanics of Advanced Materials & Structures 12, 2005, 331–340 Google Scholar

  • [238] Dakshina Moorthy C. M., Reddy J. N., Modeling of laminates using a layerwise element with enhanced strains, Int. Journal for Numerical Methods in Engineering 43, 1998, 755–779 Google Scholar

  • [239] Rammerstorfer F. G., Dorninger K., Starlinger A., Skrna-Jakl I. C., Computational methods in composite analysis and design, in Hult J., Rammerstorfer F. G. (eds.), Engineering Mechanics of Fibre Reinforced Polymers and Composite Structures, CISM Courses and Lectures No. 348, Springer-Verlag, Vienna — New York [190], 1994, 209–231 Google Scholar

  • [240] Crisfield M.A., Jelenic G., Mi Y., Zhong H.-G., Fan Z., Some aspects of the non-linear finite element method, Finite Elements in Analysis & Design 27, 1997, 19–40 Google Scholar

  • [241] Aitharaju V. R., Averill R. C., C0 zigzag kinematic displacement models for the analysis of laminated composites, Mechanics of Composite Materials & Structures 6, 1999, 31–56 Google Scholar

  • [242] Marcinowski J., Geometrically nonlinear static analysis of sandwich plates and shells, Journal of Theoretical and Applied Mechanics (Polish Society of Theoretical and Applied Mechanics) 41, 2003, 561–574 Google Scholar

  • [243] Ali R., Use of finite element technique for the analysis of composite structures, Computers & Structures 58, 1996, 1015–1023 Google Scholar

  • [244] Sze K. Y., Liu X. H., Lo S. H., Popular benchmark problems for geometric nonlinear analysis of shells, Finite Elements in Analysis and Design 40, 2004, 1551–1569 Google Scholar

  • [245] Eason T. G., Ochoa O. O., Modeling progressive damage in composites: a shear deformable element for ABAQUS, Composite Structures 34, 1996, 119–128 CrossrefGoogle Scholar

  • [246] Manet V., The use of ANSYS to calculate the behaviour of sandwich structures, Composites Science & Technology 58, 1998, 1899–1905. CrossrefGoogle Scholar

About the article

Published Online: 2011-03-18

Published in Print: 2011-03-01


Citation Information: Open Engineering, Volume 1, Issue 1, Pages 59–80, ISSN (Online) 2391-5439, DOI: https://doi.org/10.2478/s13531-011-0005-x.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Orlando Andrianarison and Ayech Benjeddou
European Journal of Computational Mechanics, 2012, Volume 21, Number 1-2, Page 103
[2]
Vyacheslav N. Burlayenko and Tomasz Sadowski
Shock and Vibration, 2018, Volume 2018, Page 1
[3]
Gaurav Watts, M.K. Singha, and S. Pradyumna
Thin-Walled Structures, 2018, Volume 122, Page 452
[4]
Yi-Tang Kao, Ying Zhang, Jyhwen Wang, and Bruce L. Tai
Additive Manufacturing, 2017, Volume 16, Page 197
[5]
Bin Han, Ke-Ke Qin, Qian-Cheng Zhang, Qi Zhang, Tian Jian Lu, and Bing-Heng Lu
Composite Structures, 2017, Volume 172, Page 173
[6]
J. Kaplunov, D.A. Prikazchikov, and L.A. Prikazchikova
International Journal of Solids and Structures, 2017, Volume 113-114, Page 169
[7]
Farshad Roohbakhshan and Roger A. Sauer
Journal of Micromechanics and Molecular Physics, 2016, Volume 01, Number 03n04, Page 1640010
[9]
Atteshamuddin S. Sayyad, Yuwaraj M. Ghugal, and Bapusaheb A. Mhaske
Journal of Thermal Stresses, 2015, Volume 38, Number 8, Page 904
[10]
M. Mehrabian and M.E. Golmakani
Computers & Mathematics with Applications, 2015, Volume 69, Number 10, Page 1272
[11]
J.-W. Simon, D. Höwer, B. Stier, and S. Reese
Composite Structures, 2015, Volume 122, Page 477
[13]
Atteshamuddin S. Sayyad and Yuwaraj M. Ghugal
Structural Engineering and Mechanics, 2014, Volume 51, Number 5, Page 867
[14]
Ugo Icardi and Federico Sola
Journal of Aerospace Engineering, 2015, Volume 28, Number 5, Page 04014135
[15]
Jaan-Willem Simon, Bertram Stier, and Stefanie Reese
Advances in Engineering Software, 2015, Volume 80, Page 4
[16]
Andrzej Teter, Hubert Debski, and Sylwester Samborski
Thin-Walled Structures, 2014, Volume 85, Page 324
[18]
Bertram Stier, Jaan-Willem Simon, and Stefanie Reese
Applied Composite Materials, 2015, Volume 22, Number 2, Page 171
[19]
Atteshamuddin S. Sayyad and Yuwaraj M. Ghugal
International Journal of Structural Stability and Dynamics, 2014, Volume 14, Number 07, Page 1450020
[20]
Atteshamuddin Shamshuddin Sayyad and Yuwaraj Marotrao Ghugal
International Journal of Mechanics and Materials in Design, 2014, Volume 10, Number 3, Page 247
[23]
YUWARAJ M. GHUGAL and ATTESHAMUDDIN S. SAYYAD
International Journal of Applied Mechanics, 2013, Volume 05, Number 01, Page 1350003

Comments (0)

Please log in or register to comment.
Log in