Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Engineering

formerly Central European Journal of Engineering

Editor-in-Chief: Ritter, William


CiteScore 2018: 0.91

SCImago Journal Rank (SJR) 2018: 0.211
Source Normalized Impact per Paper (SNIP) 2018: 0.655

ICV 2018: 121.06

Open Access
Online
ISSN
2391-5439
See all formats and pricing
More options …

Microfluidic fuel cell systems

Bernard Ho / Erik Kjeang
Published Online: 2011-06-14 | DOI: https://doi.org/10.2478/s13531-011-0012-y

Abstract

A microfluidic fuel cell is a microfabricated device that produces electrical power through electrochemical reactions involving a fuel and an oxidant. Microfluidic fuel cell systems exploit co-laminar flow on the microscale to separate the fuel and oxidant species, in contrast to conventional fuel cells employing an ion exchange membrane for this function. Since 2002 when the first microfluidic fuel cell was invented, many different fuels, oxidants, and architectures have been investigated conceptually and experimentally. In this mini-review article, recent advancements in the field of microfluidic fuel cell systems are documented, with particular emphasis on design, operation, and performance. The present microfluidic fuel cell systems are categorized by the fluidic phases of the fuel and oxidant streams, featuring gaseous/gaseous, liquid/gaseous, and liquid/liquid systems. The typical cell configurations and recent contributions in each category are analyzed. Key research challenges and opportunities are highlighted and recommendations for further work are provided.

Keywords: Microfluidic; Fuel cell; Membraneless; Vanadium; Formic acid; Direct methanol; PEM; AAEM

  • [1] Mench M.M., Fuel Cell Engines, Wiley, England, USA, 2008. http://dx.doi.org/10.1002/9780470209769CrossrefGoogle Scholar

  • [2] Larminie J., Dicks A., Fuel Cell Systems Explained, Second Edition, Wiley, England, 2003. Google Scholar

  • [3] Fernandes A.C., Paganin V.A., Ticianelli E.A., Degradation study of Pt-based alloy catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells, Journal of Electroanalytical Chemistry, 2010, 648, 156–162. http://dx.doi.org/10.1016/j.jelechem.2010.07.013CrossrefGoogle Scholar

  • [4] Tada T., Toshima N., Yamamoto Y., Inoue M., Investigation of catalyst degradation after single cell life tests, Electrochemistry -Tokyo-, 2007, 75(2), 221–230. Google Scholar

  • [5] Kjeang E., Djilali N., Sinton D., Microfluidic fuel cells: A review, Journal of Power Sources, 2009, 186, 353–369. http://dx.doi.org/10.1016/j.jpowsour.2008.10.011CrossrefGoogle Scholar

  • [6] Fiorini G.S., Chiu D.T., Disposable microfluidic devices: fabrication, function, and application, Biotechniques, 2005, 38, 429–446. http://dx.doi.org/10.2144/05383RV02CrossrefGoogle Scholar

  • [7] Bullen R.A., Arnot T.C., Lakeman J.B., Walsh F.C., Biofuel cells and their development, Biosensors and Biomechanics, 2006, 21, 2015–2045. http://dx.doi.org/10.1016/j.bios.2006.01.030CrossrefGoogle Scholar

  • [8] Wang H., Bernarda A., Huang C., Lee D.J., et al., Micro-sized microbial fuel cell: A mini review, Biosource Technology, 2011, 102, 235–243. http://dx.doi.org/10.1016/j.biortech.2010.07.007CrossrefGoogle Scholar

  • [9] Lee J., Kjeang E., A perspective on microfluidic biofuel cells, Biomicrofluidics, 2010, 4(041301). Web of ScienceGoogle Scholar

  • [10] Brushett F., Zhou W., Jayashree R., Kenis P.J.A., Alkaline microfluidic hydrogen-oxygen fuel cell as a cathode characterization platform, Journal of the Electrochemical Society, 2009, 156(5), B565–B571. http://dx.doi.org/10.1149/1.3083226Web of ScienceCrossrefGoogle Scholar

  • [11] Naughton M., Brushett F., Kenis P.J.A., Carbonate resilience of flowing electrolyte-based alkaline fuel cells, Journal of Power Sources, 2011, 196, 1762–1768. http://dx.doi.org/10.1016/j.jpowsour.2010.09.114Web of ScienceCrossrefGoogle Scholar

  • [12] Gago A., Morales-Acosta D., Arriaga L., Alonso-Vante N., Carbon supported ruthenium chalogenide as cathode catalyst in a microfluidic formic acid fuel cell, Journal of Power Sources, 2011, 196, 1324–1328. http://dx.doi.org/10.1016/j.jpowsour.2010.08.109CrossrefWeb of ScienceGoogle Scholar

  • [13] Morales-Acosta D., Rodriguez H., Godinez L. Arriaga L.G., Performance increase of microfluidic formic acid fuel cell using Pd/MWCNTs as catalyst, Journal of Power Sources, 2010, 195, 1862–1865. http://dx.doi.org/10.1016/j.jpowsour.2009.10.007Web of ScienceCrossrefGoogle Scholar

  • [14] Hollinger A., Maloney R., Jayashree R. Natarajan D., et al. Nanoporous separator and low fuel concentration to minimize crossover in direct methanol laminar flow fuel cell, Journal of Power Sources, 2010, 195, 3523–3528. http://dx.doi.org/10.1016/j.jpowsour.2009.12.063Web of ScienceCrossrefGoogle Scholar

  • [15] Whipple D., Jayashree R., Egas D., Alonso-Vante N., et a l, Ruthenium cluster-like chalogenide as a methanol tolerant cathode catalyst in air-breathing laminar flow fuel cells, Electrochimica Acta, 2009, 54, 4384–4388. http://dx.doi.org/10.1016/j.electacta.2009.03.013Web of ScienceCrossrefGoogle Scholar

  • [16] Salloum K., Posner J., Counter flow membraneless microfluidic fuel cell, Journal of Power Sources, 2010, 195, 6941–6944. http://dx.doi.org/10.1016/j.jpowsour.2010.03.096CrossrefWeb of ScienceGoogle Scholar

  • [17] Salloum K, Posner J., A membraneless microfluidic fuel cell stack, Journal of Power Pources, 2011, 196, 1229–1234. http://dx.doi.org/10.1016/j.jpowsour.2010.08.069CrossrefGoogle Scholar

  • [18] Hao Yu E., Krewer U., Scott K., Principes and materials aspects of direct alkaline alcohol fuel cell, Energies, 2010, 3, 1499–1528. http://dx.doi.org/10.3390/en3081499Web of ScienceCrossrefGoogle Scholar

  • [19] Gulzow E., Schule M., Long-term operation of AFC electrodes with CO2 containing gases, Journal of Power Sources, 2004, 127, 243–251. http://dx.doi.org/10.1016/j.jpowsour.2003.09.020CrossrefGoogle Scholar

  • [20] S. Supramaniam, Fuel Cells: From Fundamentals to Applications, Springer, New York, 2006. Google Scholar

  • [21] Viscosity of aqueous KOH solutions, 2010. Retrieved from http://koh.olinchloralkali.com/TechnicalInformation/KOH%20Viscosity.pdf. Google Scholar

  • [22] Alcaide F., Brillas E., Cabot P.L., Hydrogen oxidation reaction in a Pt-catalyzed gas diffusion electrode in alkaline medium, Journal of the Electrochemical Society, 2005, 152, E319–E327. http://dx.doi.org/10.1149/1.2008976CrossrefGoogle Scholar

  • [23] Kjeang E., Brolo A.G., Harrington D.A., Djilali N., et a l., Hydrogen Peroxide as an Oxidant for Microfluidic Fuel Cells, Journal of the Electrochemical Society, 2007, 154, B1220–B1226. http://dx.doi.org/10.1149/1.2784185CrossrefGoogle Scholar

  • [24] Kjeang E., Michel R., Harrington D.A., Sinton D., et a l., An Alkaline microfluidic fuel cell based on formate and hypochlorite bleach, Electrochimica Acta, 2008, 54, 698–705. http://dx.doi.org/10.1016/j.electacta.2008.07.009CrossrefWeb of ScienceGoogle Scholar

  • [25] United States Patent Application #20090023036. Google Scholar

  • [26] Jayashree R.S., Gancs L., Choban E.R., Primak A., et a l., Air-breathing laminar flow-based microfluidic fuel cell, Journal of the American Chemical Society, 2005, 127, 16758–16759. http://dx.doi.org/10.1021/ja054599kCrossrefGoogle Scholar

  • [27] Jayashree R.S., Egas D., Spendelow J.S., Natarajan D., et al., Air-breathing laminar flow based direct methanol fuel cell with alkaline electrolyte, Electrochemical and Solid-State Letters, 2006, 9(5), A252–A256. http://dx.doi.org/10.1149/1.2185836CrossrefGoogle Scholar

  • [28] Shyu J., Wei C., Lee C., Wang C., Investigation of bubble effect in microfluidic fuel cell by a simplified microfluidic reactor, Applied Thermal Engineering, 2010,30, 1863–1871. http://dx.doi.org/10.1016/j.applthermaleng.2010.04.029CrossrefWeb of ScienceGoogle Scholar

  • [29] Fu B., Pan C., Simple channel geometry for enhancement of chemical reactions in microchannels, Industrial and Engineering Chemistry Research, 2010, 49, 9413–9422. http://dx.doi.org/10.1021/ie100589cWeb of ScienceCrossrefGoogle Scholar

  • [30] Cohen J.L., Volpe D.J., Daron A.W., Pechenik A., et al., A dual electrolyte H2/O2 planar membraneless microchannel fuel cell system with open circuit potentials in excess of 1.4V, Langmuir, 2005, 21, 3544–3550. http://dx.doi.org/10.1021/la0479307CrossrefGoogle Scholar

  • [31] Mutolo P.F., The PM2TM power cell: planar, membraneless microfluidic portable power, Proceedings of the 11th Annual International Conference on Small Fuel Cells 2009, May 7–8, 2009, Orlando, FL, USA. Google Scholar

  • [32] D’Couto C., High power density liquid fuel cells based on porous silicon for portable power application in air free and air quality limited environments, Proceedings of the 11th Annual International Conference on Small Fuel Cells 2009, May 7–8, 2009, Orlando, FL, USA. Google Scholar

  • [33] Rychcik M., Skyllas-Kazacos M., Characteristics of a new all-vanadium redox flow battery, Journal of Power Sources, 1988,22,59–67. http://dx.doi.org/10.1016/0378-7753(88)80005-3CrossrefGoogle Scholar

  • [34] Ferrigno R., Stroock A.D., Clark T.D., Mayer M., et al., Membraneless vanadium redox fuel cell using laminar flow, Journal of American Chemical Society, 2002, 124, 12930–12931. http://dx.doi.org/10.1021/ja020812qCrossrefGoogle Scholar

  • [35] Kjeang E., McKechnie J., Djilali N., Sinton D., Planar and Three-Dimensional Microfluidic Fuel Cell Architectures Based on Graphite Rod Electrodes, Journal of Power Sources, 2007, 168, 379–390. http://dx.doi.org/10.1016/j.jpowsour.2007.02.087Web of ScienceCrossrefGoogle Scholar

  • [36] Kjeang E., Proctor B.T., Brolo A.G., Harrington D.A., et al., High-Performance Microfluidic Vanadium Redox Fuel Cell, Electrochimica Acta, 2007, 52, 4942–4946. http://dx.doi.org/10.1016/j.electacta.2007.01.062CrossrefGoogle Scholar

  • [37] Kjeang E., Michel R., Harrington D.A., Djilali N., et al., A Microfluidic Fuel Cell with Flow-Through Porous Electrodes, Journal of the American Chemical Society, 2008, 130, 4000–4006. http://dx.doi.org/10.1021/ja078248cCrossrefGoogle Scholar

About the article

Published Online: 2011-06-14

Published in Print: 2011-06-01


Citation Information: Open Engineering, Volume 1, Issue 2, Pages 123–131, ISSN (Online) 2391-5439, DOI: https://doi.org/10.2478/s13531-011-0012-y.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Omid Babaie Rizvandi and Serhat Yesilyurt
Electrochimica Acta, 2019, Volume 318, Page 169
[2]
Bernard Ho and Erik Kjeang
Journal of Fluids Engineering, 2013, Volume 135, Number 2, Page 021304
[3]
Omar A. Ibrahim, Marc-Antoni Goulet, and Erik Kjeang
Journal of The Electrochemical Society, 2015, Volume 162, Number 7, Page F639
[4]
F. Javier del Campo
Electrochemistry Communications, 2014, Volume 45, Page 91
[5]
A Moreno-Zuria, A Dector, N Arjona, M Guerra-Balcázar, J Ledesma-García, J P Esquivel, N Sabaté, L G Arrriaga, and A U Chávez-Ramírez
Journal of Physics: Conference Series, 2013, Volume 476, Page 012033
[6]
A. Déctor, J.P. Esquivel, M.J. González, M. Guerra-Balcázar, J. Ledesma-García, N. Sabaté, and L.G. Arriaga
Electrochimica Acta, 2013, Volume 92, Page 31

Comments (0)

Please log in or register to comment.
Log in