Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Engineering

formerly Central European Journal of Engineering

Editor-in-Chief: Ritter, William

1 Issue per year


CiteScore 2017: 0.70

SCImago Journal Rank (SJR) 2017: 0.211
Source Normalized Impact per Paper (SNIP) 2017: 0.787

Open Access
Online
ISSN
2391-5439
See all formats and pricing
More options …

Simulating pile load-settlement behavior from CPT data using intelligent computing

I. Alkroosh / H. Nikraz
Published Online: 2011-07-22 | DOI: https://doi.org/10.2478/s13531-011-0029-2

Abstract

Analysis of pile load-settlement behavior is a complex problem due to the participation of many factors involved. This paper presents a new procedure based on artificial neural networks (ANNs) for simulating the load-settlement behavior of pile foundations embedded in sand and mixed soils (subjected to axial loads). Three ANN models have been developed, a model for bored piles and two other models for driven piles (a model for each of concrete and steel piles). The data used for development of the ANN models is collected from the literature and comprise a series of in-situ piles load tests as well as cone penetration test (CPT) results. The data of each model is divided into two subsets: Training set for model calibration and independent validation set for model verification. Predictions from the ANN models are compared with the results of experimental data and with predictions of number of currently adopted load-transfer methods. Statistical analysis is used to verify the performance of the models. The results indicate that the ANN model performs very well and able to predict the pile load-settlement behaviour accurately.

Keywords: Prediction; Pile load-settlement model; Artificial neural networks

  • [1] Randolph M. F., Design Methods for Pile Groups and Pile Rafts, State-of-the-art lecture, Proceedings of XIII International Conference on Soil Mechanic, New Delhi, 1994 Google Scholar

  • [2] Fleming W. G., A New Method for Single Pile Settlement Prediction and Analysis, Geotechnique, 1992, 42(3), 411–425 http://dx.doi.org/10.1680/geot.1992.42.3.411CrossrefGoogle Scholar

  • [3] Pooya Nejad F., Jaksa M., Kakhi M., et al., Prediction of Pile Settlement Using Artificial Neural Networks Based on Standard Penetration Test Data, Computers and Geotechnics, 2009, 36(7), 1125–1133 http://dx.doi.org/10.1016/j.compgeo.2009.04.003CrossrefWeb of ScienceGoogle Scholar

  • [4] Coduto D. P., Foundation Design, Prentice-Hall Inc, New Jersey, 1994 Google Scholar

  • [5] Poulos H. G., Davis E. H., Pile Foundation Analysis and Design, Wiley, New York, 1980 Google Scholar

  • [6] Abu-Kiefa M., General Regression Neural Networks for Driven Piles in Cohesionless Soils, J. of Geotechnical & Geoenvironmental Eng., 1998, 124(12), 1177–1185 http://dx.doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1177)CrossrefGoogle Scholar

  • [7] Shahin M., Intelligent Computing for Modeling Axial Capacity of Pile Foundations, Canadian Geotechnical Journal, 2010, 47(2), 230–243 http://dx.doi.org/10.1139/T09-094CrossrefWeb of ScienceGoogle Scholar

  • [8] Ardalan H., Eslami A., Nariman-Zadeh N., Pile Shaft Capacity from CPT and CPTu Data by Polynomial Neural Networks and Genetic Algorithms, Computers and Geotechnics, 2009, 36(4), 616–625 http://dx.doi.org/10.1016/j.compgeo.2008.09.003Web of ScienceCrossrefGoogle Scholar

  • [9] Shahin M., Indraratna B., Modeling the Mechanical Behavior of Railway Ballast Using Artificial Neural Networks, Canadian Geotechnical Journal, 2006, 43(11), 114–1152. http://dx.doi.org/10.1139/t06-077CrossrefGoogle Scholar

  • [10] Rumelhart D. E., Hinton G. E., Williams R. J., Learning Internal Representations by Error Propagation, In: Rumelhart D. E., McClelland J. L., Parallel Distributed Processing, Cambridge Mass, MIT Press, 1986 Google Scholar

  • [11] Fausett L. V., Fundamentals of Neural Networks: Architectures, Algorithms and Applications, Prentice-Hall: Englewood Cliffs, N. J. 1994 Google Scholar

  • [12] Jordan M. I., Attractor Dynamics and Parallelism in a Connectionist Sequential Machine, Proceedings of the 8th Annual Conf. of the Cognitive Science Society, Amherst, Mass, 1986 Google Scholar

  • [13] Neuroshell 2 Release 4.0, Ward Systems Group, Inc., Mass, 2000 Google Scholar

  • [14] Eslami A., Bearing Capacity of Piles from Cone Penetration Data, PhD thesis, University of Ottawa, 1996 Google Scholar

  • [15] Alsamman O., The Use of CPT for Calculating Axial Capacity of Drilled Shafts, PhD Thesis, University of Illinois. USA, 1995 Google Scholar

  • [16] Ng C. W., Simons N., Menzies B., Soil — Structure Engineering of Deep Foundations Excavations and Tunnels, Thomas Telford Ltd, London, 2004 Google Scholar

  • [17] Penumadu D., Zhao R., Triaxial Compression Behaviour of Sand and Gravel Using Artificial Neural Networks, Computers and Geotechnics, 1999, 24(3), 207–30 http://dx.doi.org/10.1016/S0266-352X(99)00002-6CrossrefGoogle Scholar

  • [18] Kulhway F. H., Mayne P.W., Manual on Estimating Soil Properties for Foundation Design, In: Report EL-6800, Research Project 1493-6. Palto, CA. 1990 Google Scholar

  • [19] Master T., Practical Neural Network Recipes in C++, Academic Press, San Diego, StateCalifornia, 1993 Google Scholar

  • [20] Shahin M., Maier H., Jaska M., Data Division for Developing Neural Networks Applied to Geotechnical Engineering, Journal of Computing in Civil Eng., 2004, 18(2), 105–114 http://dx.doi.org/10.1061/(ASCE)0887-3801(2004)18:2(105)CrossrefGoogle Scholar

  • [21] Hornik K., Stinchcombe M., White H., Multilayer Feedforward Networks Are Universal Approximators, Neural Networks, 1989, 2(5), 359–366 http://dx.doi.org/10.1016/0893-6080(89)90020-8CrossrefGoogle Scholar

  • [22] Das S. K., Basudhar P. K., Prediction of Residual Friction Angle of Clays Using Artificial Neural Network, Engineering Geology, 2008, 100(3–4), 142–145 http://dx.doi.org/10.1016/j.enggeo.2008.03.001Web of ScienceCrossrefGoogle Scholar

  • [23] Das S. K., Basudhar P. K., Undrained Lateral Load Capacity of Piles in Clay Using Artificial Neural Networks, Computers and Geotechnics, 2006, 33(8), 454–459 http://dx.doi.org/10.1016/j.compgeo.2006.08.006CrossrefGoogle Scholar

  • [24] Caudill M., Neural Networks Primer Part III, AI Expert, 1988, 3(6), 53–59 Google Scholar

  • [25] Long J., Wysockey M., Accuracy of Methods for Predicting Axial Capacity of Deep Foundations, Geotechnical Special Publication, 1999, (88), 180–195 Google Scholar

  • [26] Verbrugge I. J., Pile Foundations Design Using C.P.T Results, Structural Engineering Practice, 1986, 3(2), 93–112 Google Scholar

  • [27] API, Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms — Working Stress Design, 20th ed., American Petroleum Institute, Washington, StateDC, 1993 Google Scholar

  • [28] Lunne T., Robertson P. K., Powell J. J., Cone Penetration Testing in Geotechnical Practice, Blackie Academic and Professional, New York. 1997 Google Scholar

  • [29] DeBeer E. E., Static Cone Penetration Testing in Clay and Loam, Sondeer Symposium, Utrecht, 1977 Google Scholar

  • [30] Bustamante M., Gianeeselli L., Pile Bearing Capacity Prediction by Means of Static Penerometer Cpt, The 2nd European Symposium on Penetration Testing, Amsterdam, 1982 Google Scholar

  • [31] Imai T., Tonouchi K., Correlation of N value with Swave velocity and shear modulus, Proceedings of European Symposium on Penetration Testing 2, Amsterdam, 1982 Google Scholar

  • [32] Abu-Farsakh M., Titi H., Assessment of Direct Cone Penetration Test Methods for Predicting the Ultimate Capacity of Friction Driven Piles, J. of Geotechnical and Environmental Eng., 2004, 130(9), 935–944 http://dx.doi.org/10.1061/(ASCE)1090-0241(2004)130:9(935)CrossrefGoogle Scholar

About the article

Published Online: 2011-07-22

Published in Print: 2011-09-01


Citation Information: Open Engineering, Volume 1, Issue 3, Pages 295–305, ISSN (Online) 2391-5439, DOI: https://doi.org/10.2478/s13531-011-0029-2.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Hossein Moayedi and Sajad Hayati
International Journal of Geomechanics, 2018, Volume 18, Number 6, Page 06018009
[2]
Ameer A. Jebur, William Atherton, Rafid M. Alkhadar, and Edward Loffill
Procedia Engineering, 2017, Volume 196, Page 60
[3]
Jui-Sheng Chou, Kuo-Hsin Yang, and Jie-Ying Lin
Journal of Computing in Civil Engineering, 2016, Volume 30, Number 6, Page 04016036
[4]
Mohamed A. Shahin
International Journal of Geomechanics, 2014, Volume 14, Number 6, Page 06014012

Comments (0)

Please log in or register to comment.
Log in