Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Engineering

formerly Central European Journal of Engineering

Editor-in-Chief: Ritter, William

CiteScore 2017: 0.70

SCImago Journal Rank (SJR) 2017: 0.211
Source Normalized Impact per Paper (SNIP) 2017: 0.787

ICV 2017: 100.00

Open Access
See all formats and pricing
More options …

The environmental impact of gold mines: pollution by heavy metals

Sabah Abdul-Wahab
  • Department of Mechanical & Industrial Engineering, College of Engineering, Sultan Qaboos University, Al Khoudh, Sultanate of Oman
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fouzul Marikar
Published Online: 2012-04-11 | DOI: https://doi.org/10.2478/s13531-011-0052-3


The gold mining plant of Oman was studied to assess the contribution of gold mining on the degree of heavy metals into different environmental media. Samples were collected from the gold mining plant area in tailings, stream waters, soils and crop plants. The collected samples were analyzed for 13 heavy metals including vanadium (V), chromium (Cr), manganese (Mn), nickel (Ni), copper (Cu), cadmium (Cd), cobalt (Co), lead (Pb), zinc (Zn), aluminium (Al), strontium (Sr), iron (Fe) and barium (Ba). The water in the acid evaporation pond showed a high concentration of Fe as well as residual quantities of Zn, V, and Al, whereas water from the citizens well showed concentrations of Al above those of Omani and WHO standards. The desert plant species growing closed to the gold pit indicated high concentrations of heavy metals (Mn, Al, Ni, Fe, Cr, and V), while the similar plant species used as a control indicated lesser concentrations of all heavy metals. The surface water (blue) indicated very high concentrations of copper and significant concentrations of Mn, Ni, Al, Fe, Zn, lead, Co and Cd. The results revealed that some of the toxic metals absorbed by plants indicated significant metal immobilization.

Keywords: Environment; Gold mining; Heavy metals; Pollution; Tailings; Soil; Water

  • [1] Donkor A.K., Bonzongo J.-C.J., Nartey V.K., Adotey D.K., Heavy metals in sediments of the gold mining impacted Pra River basin, Ghana, West Africa, Soil and Sediment Contamination, 14(6), 2005, 479–503 http://dx.doi.org/10.1080/15320380500263675CrossrefGoogle Scholar

  • [2] Cooke J.A., Johnson M.S., Ecological restoration of land with particular reference to the mining of metals and industrial minerals: A review of theory and practice, Environ. Rev., 10(1), 2002, 41–71 http://dx.doi.org/10.1139/a01-014CrossrefGoogle Scholar

  • [3] Ledin M., Pedersen K., The environmental impact of mine wastes — Roles of microorganisms and their significance in treatment of mine wastes, Earth Sci. Rev., 41(1–2), 1996, 67–108 http://dx.doi.org/10.1016/0012-8252(96)00016-5CrossrefGoogle Scholar

  • [4] Getaneh W., Alemayehu T., Metal contamination of the environment by placer and primary gold mining in the Adola region of southern Ethiopia, Environ. Geol., 50(3), 2006, 339–352 http://dx.doi.org/10.1007/s00254-006-0213-5CrossrefGoogle Scholar

  • [5] Franco-Hernández M.O., Vásquez-Murrieta M.S., Patiño-Siciliano A., Dendooven L., Heavy metals concentration in plants growing on mine tailings in Central Mexico, Bioresource Technol., 101(11), 2010, 3864–3869 http://dx.doi.org/10.1016/j.biortech.2010.01.013Web of ScienceCrossrefGoogle Scholar

  • [6] González I., Jordán M.M., Sanfeliu T., Quiroz M., De La Fuente C., Mineralogy and heavy metal content in sediments from Rio Gato, Carelmapu and Cucao, Southern Chile, Environ. Geol., 52(7), 2007, 1243–1251 Web of ScienceCrossrefGoogle Scholar

  • [7] Grimalt J.O., Ferrer M., MacPherson E., The mine tailing accident in Aznalcollar, Sci. Total Environ., 242(1–3), 1999, 3–11 CrossrefGoogle Scholar

  • [8] Eisler R., Health risks of gold miners: A synoptic review, Environ. Geochem. Health, 25(3), 2003, 325–345 http://dx.doi.org/10.1023/A:1024573701073CrossrefGoogle Scholar

  • [9] Eisler R., Arsenic hazards to humans, plants, and animals from gold mining, Rev. Environ. Contam. T., 180, 2004, 133–165 http://dx.doi.org/10.1007/0-387-21729-0_3CrossrefGoogle Scholar

  • [10] Eisler R., Mercury hazards from gold mining to humans, plants, and animals, Rev. Environ. Contam. T., 181, 2005, 139–198 http://dx.doi.org/10.1007/0-387-21733-9_4CrossrefGoogle Scholar

  • [11] Kim K.-K., Kim K.-W., Kim J.-Y., Kim I.S., Cheong Y.-W., Min J.-S., Characteristics of tailings from the closed metal mines as potential contamination source in South Korea, Environ. Geol., 41(3–4), 2001, 358–364 http://dx.doi.org/10.1007/s002540100396CrossrefGoogle Scholar

  • [12] Kim K.W., Lee H.K., Yoo B.C., The environmental impact of gold mines in the Yugu-Kwangcheon Au-Ag Metallogenic Province, Republic of Korea, Environ. Technol., 19(3), 1998, 291–298 http://dx.doi.org/10.1080/09593331908616683CrossrefGoogle Scholar

  • [13] Jung M.C., Thornton I., Heavy metal contamination of soils and plants in the vicinity of a lead-zinc mine, Korea, Appl. Geochem., 11(1–2), 1996, 53–59 http://dx.doi.org/10.1016/0883-2927(95)00075-5CrossrefGoogle Scholar

  • [14] Aslibekian O., Moles R., Environmental risk assessment of metals contaminated soils at silvermines abandoned mine site, Co Tipperary, Ireland, Environ. Geochem. Health, 25(2), 2003, 247–266 http://dx.doi.org/10.1023/A:1023251102402CrossrefGoogle Scholar

  • [15] Grzebisz W., Ciesla L., Komisarek J., Potarzycki J., Geochemical Assessment of Heavy Metals Pollution of Urban Soils, Pol. J. Environ. Stud., 11(5), 2002, 493–499 Google Scholar

  • [16] Patel K.S., Shrivas K., Brandt R., Jakubowski N., Corns W., Hoffmann P., Arsenic contamination in water, soil, sediment and rice of central India, Environ. Geochem. Health 27(2), 2005, 131–145 http://dx.doi.org/10.1007/s10653-005-0120-9CrossrefGoogle Scholar

  • [17] Crounse R.G., Pories W.J., Bray J.T., Mauger R.L., Geochemistry and man: health and disease. 1. Essential elements, Appl. Environ. Geochem., 1983, 267–308 Google Scholar

  • [18] Lottermoser B.G., Gold in municipal sewage sludges: A review on concentrations, sources and potential extraction, J. Solid. Waste. Tech. Manag., 27(2), 2001, 69–75 Google Scholar

  • [19] Rowe Jr. G.L., Reutter D.C., Runkle D.L., Hambrook J.A., Janosy S.D., Hwang L.H., Water quality in the Great and Little Miami River Basins, Ohio and Indiana, 1999–2001. US Geol. Surv. Circular, (1229), 2004a, iv-32 Google Scholar

  • [20] Rowe J., McKnight S., Hall S., The biological oxidation of carbonaceous material in the treatment of a refractory gold bearing ore, Australasian Institute of Mining and Metallurgy Publication Series, 2004b, 173–174 Google Scholar

  • [21] Thornton I., Impacts of mining on the environment; some local, regional and global issues, Appl. Geochem., 11(1–2), 1996, 355–361 http://dx.doi.org/10.1016/0883-2927(95)00064-XCrossrefGoogle Scholar

  • [22] Fayiga A.O., Ma L.Q., Cao X., Rathinasabapathi B., Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pteris vittata L, Environ. Pollut., 132(2), 2004, 289–296 http://dx.doi.org/10.1016/j.envpol.2004.04.020CrossrefGoogle Scholar

  • [23] Fayiga A.O., Ma L.Q., Arsenic uptake by two hyperaccumulator ferns from four arsenic contaminated soils, Water Air. Soil. Pollut., 168(1–4), 2005, 71–89 http://dx.doi.org/10.1007/s11270-005-0612-3CrossrefGoogle Scholar

  • [24] Fayiga A.O., Ma L.Q., Santos J., Rathinasabapathi B., Stamps B., Littell R.C., Effects of arsenic species and concentrations on arsenic accumulation by different fern species in a hydroponic system, International Journal of Phytoremediation, 7(3), 2005, 231–240 http://dx.doi.org/10.1080/16226510500215720CrossrefGoogle Scholar

  • [25] Fayiga A.O., Ma L.Q., Zhou Q., Effects of plant arsenic uptake and heavy metals on arsenic distribution in an arsenic-contaminated soil, Environ. Pollut., 147(3), 2007, 737–742 http://dx.doi.org/10.1016/j.envpol.2006.09.010CrossrefGoogle Scholar

  • [26] Monni S., Uhlig C., Hansen E., Magel E., Ecophysiological responses of Empetrum nigrum to heavy metal pollution, Environ. Pollut., 112(2), 2001, 121–129 http://dx.doi.org/10.1016/S0269-7491(00)00125-1CrossrefGoogle Scholar

  • [27] Ashley P.M., Lottermoser B.G., Arsenic contamination at the Mole River mine, northern New South Wales, Aust. J. Earth. Sci., 46(6), 1999, 861–874 http://dx.doi.org/10.1046/j.1440-0952.1999.00748.xCrossrefGoogle Scholar

  • [28] Lottermoser B.G., Ashley P.M., Lawie D.C., Environmental geochemistry of the Gulf Creek copper mine area, north-eastern New South Wales, Australia, Environ. Geol., 39(1), 2000, 61–74 http://dx.doi.org/10.1007/s002540050437CrossrefGoogle Scholar

  • [29] Ogola J.S., Mitullah W.V., Omulo M.A., Impact of gold mining on the environment and human health: A case study in the Migori Gold Belt, Kenya, Environ. Geochem. Health, 24(2), 2002, 141–158 http://dx.doi.org/10.1023/A:1014207832471CrossrefGoogle Scholar

  • [30] Miller J.R., Hudson-Edwards K.A., Lechler P.J., Preston D., Macklin M.G., Heavy metal contamination of water, soil and produce within riverine communities of the Río Pilcomayo basin, Bolivia, Sci. Total Environ., 320(2–3), 2004, 189–209 http://dx.doi.org/10.1016/j.scitotenv.2003.08.011CrossrefGoogle Scholar

  • [31] Von Der Heyden C.J., New M.G., Groundwater pollution on the Zambian Copperbelt: Deciphering the source and the risk, Sci. Total Environ. 327(1–3), 2004, 17–30 Google Scholar

  • [32] El-Moselhy K.M., Gabal M.N., Trace metals in water, sediments and marine organisms from the northern part of the Gulf of Suez, Red Sea, J. Mar. Syst., 46(1–4), 2004, 39–46 http://dx.doi.org/10.1016/j.jmarsys.2003.11.014CrossrefGoogle Scholar

  • [33] Lottermoser B.G., Ashley P.M., Tailings dam seepage at the rehabilitated Mary Kathleen uranium mine, Australia, J. Geochem. Explor., 85(3), 2005, 119–137 http://dx.doi.org/10.1016/j.gexplo.2005.01.001CrossrefGoogle Scholar

  • [34] Nordstrom D.K., Alpers C.N., Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the iron mountain superfund site, California, Proceedings of the National Academy of Sciences of the United States of America, 96(7), 1999, 3455–3462 http://dx.doi.org/10.1073/pnas.96.7.3455CrossrefGoogle Scholar

  • [35] Nordstrom D.K., Advances in the hydrogeochemistry and microbiology of acid mine waters, Int. Geol. Rev., 42(6), 2000, 499–515 http://dx.doi.org/10.1080/00206810009465095CrossrefGoogle Scholar

  • [36] Nordstrom D.K., Alpers C.N., Ptacek C.J., Blowes D.W., Negative pH and extremely acidic mine waters from Iron Mountain, California, Environ. Sci. Tech., 34(2), 2000, 254–258 CrossrefGoogle Scholar

  • [37] Harries J.R., Ritchie A.I.M., Pore gas composition in waste rock dumps undergoing pyritic oxidation, Soil Sci., 140(2), 1985, 143–152 http://dx.doi.org/10.1097/00010694-198508000-00010CrossrefGoogle Scholar

  • [38] Lefebvre R., Hockley D., Smolensky J., Gélinas P., Multiphase transfer processes in waste rock piles producing acid mine drainage. 1: Conceptual model and system characterization, J. Contam. Hydrol., 52(1–4), 2001, 137–164 http://dx.doi.org/10.1016/S0169-7722(01)00156-5CrossrefGoogle Scholar

  • [39] Lo J.M., Sakamoto H., Comparison of the acid combinations in microwave-assisted digestion of marine sediments for heavy metals analyses, Anal. Sci., 21(10), 2005, 1181–1184 http://dx.doi.org/10.2116/analsci.21.1181CrossrefGoogle Scholar

  • [40] Boisson J., Ruttens A., Mench M., Vangronsveld J., Evaluation of hydroxyapatite as a metal immobilizing soil additive for the remediation of polluted soils. Part 1. Influence of hydroxyapatite on metal exchangeability in soil, plant growth and plant metal accumulation, Environ. Pollut., 104(2), 1999, 225–233 http://dx.doi.org/10.1016/S0269-7491(98)00184-5CrossrefGoogle Scholar

About the article

Published Online: 2012-04-11

Published in Print: 2012-06-01

Citation Information: Open Engineering, Volume 2, Issue 2, Pages 304–313, ISSN (Online) 2391-5439, DOI: https://doi.org/10.2478/s13531-011-0052-3.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Nurfitri Gafur, Masayuki Sakakibara, Sakae Sano, and Koichiro Sera
Water, 2018, Volume 10, Number 11, Page 1507
Taoufik El Rasafi, Mohamed Nouri, and Abdelmajid Haddioui
Geosystem Engineering, 2017, Page 1
Lamyai Neeratanaphan, Chatpong Khamlerd, Sutee Chowrong, Somsak Intamat, Manop Sriuttha, and Bundit Tengjaroenkul
International Journal of Environmental Studies, 2017, Volume 74, Number 4, Page 613
Ayansina Ayangbenro and Olubukola Babalola
International Journal of Environmental Research and Public Health, 2017, Volume 14, Number 1, Page 94
Muibat Fashola, Veronica Ngole-Jeme, and Olubukola Babalola
International Journal of Environmental Research and Public Health, 2016, Volume 13, Number 12, Page 1047

Comments (0)

Please log in or register to comment.
Log in