Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Engineering

formerly Central European Journal of Engineering

Editor-in-Chief: Ritter, William

1 Issue per year

CiteScore 2017: 0.70

SCImago Journal Rank (SJR) 2017: 0.211
Source Normalized Impact per Paper (SNIP) 2017: 0.787

Open Access
See all formats and pricing
More options …

Response surface optimization for efficient dye removal by isolated strain Pseudomonas sp.

Shanmugam Senthilkumar / Muthiah Perumalsamy / Harinarayan Prabhuy / Chiya AhmedBasha / Narayan Anantharaman
Published Online: 2012-07-01 | DOI: https://doi.org/10.2478/s13531-012-0001-9


Response surface methodology (RSM) involving the central composite design (CCD) was employed to optimize three important process variables for the decolourization of synthetic dye solutions containing Remazol Turquoise Blue (RTB) and Reactive Black 5 (RB5) with isolated bacterial strain Pseudomonas sp. The interaction between three variables i.e. Initial concentration of dye, carbon source and nitrogen source were studied and modeled. According to the Analysis of variance (ANOVA) results the predicted results were found to be in good agreement with experimental results (R 2: 0.9726; Adj R 2: 0.9480 for RTB and R 2: 0.9789; Adj R 2: 0.9750 for RB5) which indicated excellent evaluation of experimental data from the second order polynomial regression model. Mathematical models were developed by the proposed system, for each process variable showed the effect of each factor and their interactions on biodecolourization process. The optimum concentrations of Dye, Carbon source, and Nitrogen source were found to be 20 mgL−1, 1.5 g/L and 1.5 g/L, respectively for RTB and RB5 to obtain maximum dye removing capacity. Predicted values were validated with experimental results, which indicated appropriateness of the employed model and the success of RSM.

Keywords: Bacteria; Carbon source; Dye; Nitrogen source; RSM

  • [1] Zollinger H., Colour chemistry-synthesis, properties and application of organic dyes & pigments. VCH New York, 1987, pp. 92–102 Google Scholar

  • [2] Lin S.H., Peng F.C., Treatment of textile wastewater by electrochemical methods, Water Res., 1994, 2, 277–282 http://dx.doi.org/10.1016/0043-1354(94)90264-XCrossrefGoogle Scholar

  • [3] Lin S.H., Peng F.C., Continuous treatment of textile wastewater by combined coagulation, electrochemical oxidation and activated sludge, Water Res., 1996, 3, 587–592 http://dx.doi.org/10.1016/0043-1354(95)00210-3CrossrefGoogle Scholar

  • [4] Calabro V., Drioli E., Matera F., Membrane distillation in the textile wastewater treatment, Desalination, 1991, 83, 209–224 http://dx.doi.org/10.1016/0011-9164(91)85096-DCrossrefGoogle Scholar

  • [5] McMullan G., Meehan C., Conneely A., Kirby N., et al., Microbial decolourisation and degradation of textile dyes, Appl. Microbiol. Biotechnol., 2001, 56, 81–87 http://dx.doi.org/10.1007/s002530000587CrossrefGoogle Scholar

  • [6] Robinson T., McMullan G., Marchant R., Nigam P., Remediation of dye in textile effluent: a critical review on current treatment technologies with proposed alternative, Bioresour. Tech., 2001, 77, 247–255 http://dx.doi.org/10.1016/S0960-8524(00)00080-8CrossrefGoogle Scholar

  • [7] Banat I.M., Nigam P., Singh D., Marchant R., Microbial decolourization of textile dye containing effluents: A Review, Bioresour. Tech., 1996, 58, 217–227 http://dx.doi.org/10.1016/S0960-8524(96)00113-7CrossrefGoogle Scholar

  • [8] O’Neill C., Hawkes F.R., Hawkes D.L., Nidia D., et al., Colour in textile effluents — sources, measurement, discharge consents and simulation: a review, J. Chem.Technol. Biotechnol., 1999, 74, 1009–1018 http://dx.doi.org/10.1002/(SICI)1097-4660(199911)74:11<1009::AID-JCTB153>3.0.CO;2-NCrossrefGoogle Scholar

  • [9] Hu T.L., Decolorization of reactive azo dyes by transformation with Pseudomonas luteola, Bioresour. Technol., 1994, 49, 47–51 http://dx.doi.org/10.1016/0960-8524(94)90172-4CrossrefGoogle Scholar

  • [10] Hu T.L., Degradation of azo dye RP2B by Pseudomonas luteola, Water Sci. Tech., 1998, 38, 299–306 CrossrefGoogle Scholar

  • [11] Kodam K.M., Soojhawon I., Lokhande P.D., Gawai K.R., Microbial decolorization of reactive azo dyes under aerobic conditions, World J. Microb. Biotech., 2005, 21, 367–370 http://dx.doi.org/10.1007/s11274-004-5957-zCrossrefGoogle Scholar

  • [12] Dawkar V.V., Jadhav U., Jadhav S.U., Govindwar S.P., Biodegradation of disperse textile dye brown 3REL by newly isolated Bacillus sp. VUS., J. Appl. Microbiol., 2008, 105, 14–21 http://dx.doi.org/10.1111/j.1365-2672.2008.03738.xCrossrefGoogle Scholar

  • [13] Jadhav J.P., Parshetti G.K., Kalme S.D., Govindwar S.P., Decolourization of azo dye methyl red by Saccharomyces cerevisiae MTCC463, Chemosphere, 2007, 68, 394–400 http://dx.doi.org/10.1016/j.chemosphere.2006.12.087Web of ScienceCrossrefGoogle Scholar

  • [14] Kalyani D.C., Patil P.S., Jadhav J.P., Govindwar S.P., Biodegradation of reactive textile dye red BLI by an isolated bacterium Pseudomonas sp. SUK1, Bioresource Technol., 2008, 99, 4635–4641 http://dx.doi.org/10.1016/j.biortech.2007.06.058CrossrefWeb of ScienceGoogle Scholar

  • [15] Saratale G.D., Kalme S.D., Govindwar S.P., Decolorization of textile dyes by Aspergillus ochraceus, Ind. J. Biotechnol., 2006,5,407–419 Google Scholar

  • [16] Telke A., Kalyani D., Jadhav J., Govindwar S., Kinetics and mechanism of Reactive Red 141 degradation by a bacterial isolate Rhizobium radiobacter MTCC 8161, Acta Chim. Slov., 2008, 55, 320 Google Scholar

  • [17] Bhatt N., Patel K.C., Keharia H., Madamwar D., Decolorization of diazo dye Reactive Blue 172 by Pseudomonas aeruginosa, J. Basic Microbiol. 2005, 45, 407–418 http://dx.doi.org/10.1002/jobm.200410504CrossrefGoogle Scholar

  • [18] Valli Nachiyar C., Suseela Rajkumar G., Degradation of a tannery and textile dye, Navitan Fast Blue S5R by Pseudomonas Aeruginosa, World J. Microb. Biotech. 2003, 19, 609–614 http://dx.doi.org/10.1023/A:1025159617260CrossrefGoogle Scholar

  • [19] Pandey A., Singh P., Iyengar L., Bacterial decolorization and degradation of azo dyes, Int. Biodeter. Biodegrad., 2007, 59, 73–84 http://dx.doi.org/10.1016/j.ibiod.2006.08.006CrossrefGoogle Scholar

  • [20] Myers R.H., Montgomery D.C., Response surface methodology: process and product optimization using sesigned experiments, 2nd ed., John Wiley and Sons, USA 2002 Google Scholar

  • [21] Box G.E.P., Hunter W.G., Hunter J.S., Statistics for experimenters: an introduction to design, data analysis and model building, 1st ed., Wiley 1978 Google Scholar

  • [22] Korbahti B.K., Rauf M.A., Application of response surface analysis to the photolytic degradation of Basic Red 2 dye, Chem. Eng. J., 2008, 138, 166–171 http://dx.doi.org/10.1016/j.cej.2007.06.016CrossrefGoogle Scholar

  • [23] Nagarajan G., Annadurai G., Biodegradation of reactive dye (Verofix Red) by the white rot fungus Phanerochaete chrysosporium using Box-Behnken experimental design, Bioprocess Eng., 1999, 20, 435–448 Google Scholar

  • [24] Kaushik P., Malik A., Process optimization for efficient dye removal by Aspergillus lentulus FJ172995. J. Haz. Mater., 2011, 185, 837–843 http://dx.doi.org/10.1016/j.jhazmat.2010.09.096Web of ScienceCrossrefGoogle Scholar

  • [25] Sharmaa P., Singh L., Dilbaghi N., Optimization of process variables for decolorization of Disperse Yellow 211 by Bacillus subtilis using Box-Behnken design, J. Haz. Mater., 2009, 164, 1024–1029 http://dx.doi.org/10.1016/j.jhazmat.2008.08.104CrossrefWeb of ScienceGoogle Scholar

  • [26] Kadpan I.K., Kargi F., McMullan G., Marchant R., Effect of environmental conditions on biological decolorization of textile dyestuff by C. versicolor, Enzyme Microbiol. Technol., 2000, 26, 381–387 http://dx.doi.org/10.1016/S0141-0229(99)00168-4CrossrefGoogle Scholar

  • [27] Moosvi S., Kher X., Madamwar D., Isolation, characterization and decolorization of textile dyes by a mixed bacterial consortium JW-2, Dyes Pigm., 2007, 74, 723–729 http://dx.doi.org/10.1016/j.dyepig.2006.05.005CrossrefGoogle Scholar

  • [28] Sandhya S., Sarayu K., Uma B., Swaminathan K., Decolorizing kinetics of a recombinant Escherichia coli SS125 strain harbouring azoreductase gene from Bacillus latrosporus RRK1, Bioresour. Technol., 2008, 99, 2187–2191 http://dx.doi.org/10.1016/j.biortech.2007.05.027Web of ScienceCrossrefGoogle Scholar

About the article

Published Online: 2012-07-01

Published in Print: 2012-09-01

Citation Information: Open Engineering, Volume 2, Issue 3, Pages 425–434, ISSN (Online) 2391-5439, DOI: https://doi.org/10.2478/s13531-012-0001-9.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Abhishek Mishra and Anushree Malik
Ecological Engineering, 2014, Volume 69, Page 226

Comments (0)

Please log in or register to comment.
Log in