Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Engineering

formerly Central European Journal of Engineering

Editor-in-Chief: Ritter, William

1 Issue per year


CiteScore 2017: 0.70

SCImago Journal Rank (SJR) 2017: 0.211
Source Normalized Impact per Paper (SNIP) 2017: 0.787

Open Access
Online
ISSN
2391-5439
See all formats and pricing
More options …

Microstructure and mechanical behavior of cast Ti-6Al-4V with addition of boron

Robert Pederson
  • Division of Materials Science, Luleå University of Technology, S-97187, Luleå, Sweden
  • Department of Materials Technology, Volvo Aero Corporation, S-46181, Trollhättan, Sweden
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Raghuveer Gaddam / Marta-Lena Antti
Published Online: 2012-07-01 | DOI: https://doi.org/10.2478/s13531-012-0004-6

Abstract

The effect of boron (between 0.06 and 0.11 wt%) on the microstructure, hardness and compression properties of cast Ti-6Al-4V was investigated. Compression properties were examined in the temperature range from room temperature to 1000°C. It was found that the addition of boron refines the as-cast microstructure in terms of prior beta grain size and alpha colony size. This microstructural refinement led to an increase in compressive yield strength from room temperature up to 700°C. Three different strain rates (0.001, 0.1 and 1 s−1) were evaluated during compression testing from which it was found that the compressive yield strength decreased with decreasing strain rate from 600°C up to the beta transus temperature.

Keywords: Boron; Microstructure; Hardness; Ti-6Al-4V; Quantitative metallography; Hot compression testing

  • [1] Gorynin I.V., Titanium alloys for marine application, Mat. Sci. Eng. A-Struct., 1999, 263, 112–116 http://dx.doi.org/10.1016/S0921-5093(98)01180-0CrossrefGoogle Scholar

  • [2] Elias C.N., Lima J.H.C., Valiev R., Meyers M.A., Biomedical applications of titanium and its alloys, Jom-J. Min. Met. Mat. S., 2008, March, 47–49 Google Scholar

  • [3] Boyer R.R., An overview on the use of titanium in the aerospace industry, Mat. Sci. Eng. A-Struct., 1996, 213, 103–114 http://dx.doi.org/10.1016/0921-5093(96)10233-1CrossrefGoogle Scholar

  • [4] Peters M., Kumpfert J., Ward C.H., Leyens C., Titanium alloys for aerospace applications, Adv. Eng. Mater., 5, 2006, 419–427 http://dx.doi.org/10.1002/adem.200310095CrossrefGoogle Scholar

  • [5] Tamirisakandala S., Bhat R.B., Tiley J.S., Miracle D.B., Grain refinement of cast titanium alloys via trace boron addition, Scripta Mater., 2005, 53, 1421–1426 http://dx.doi.org/10.1016/j.scriptamat.2005.08.020CrossrefGoogle Scholar

  • [6] Bermingham M.J., McDonald S.D., Nogita K., StJohn D.H. et al., Effects of boron on microstructure in cast titanium alloys, Scripta Mater., 2008, 59, 538–541 http://dx.doi.org/10.1016/j.scriptamat.2008.05.002CrossrefWeb of ScienceGoogle Scholar

  • [7] Bermingham M.J., McDonald S.D., Dargusch M.S., StJohn D.H., The mechanism of grain refinement of titanium by silicon, Scripta Mater., 2008, 58, 1050–1053 http://dx.doi.org/10.1016/j.scriptamat.2008.01.041Web of ScienceCrossrefGoogle Scholar

  • [8] Bermingham M.J., McDonald S.D., StJohn D.H., Dargusch M.S., Beryllium as a grain refiner in titanium alloys, J. Alloy Compd., 2009, 481, 20–23 http://dx.doi.org/10.1016/j.jallcom.2009.03.016Web of ScienceCrossrefGoogle Scholar

  • [9] Zhu J., Kamiya A., Yamada T., Shi W., et al., Influence of boron addition on microstructure and mechanical properties of dental cast titanium alloys, Mat. Sci. Eng. A-Struct., 2003, 339, 53–62 http://dx.doi.org/10.1016/S0921-5093(02)00102-8CrossrefGoogle Scholar

  • [10] Bilous O.O., Artyukh L.V., Bondar A.A., Velikanova T.Ya., et al., Effect of boron on the structure and mechanical properties of Ti-6Al and Ti-6Al-4V, Mat. Sci. Eng. A-Struct., 2005, 402, 76–83 http://dx.doi.org/10.1016/j.msea.2005.05.011CrossrefGoogle Scholar

  • [11] Sen I., Tamirisakandala S., Miracle D.B., Ramamurty U., Microstructural effects on the mechanical behavior of B-modified Ti-6Al-4V alloys, Acta Mater., 2007, 55, 4983–4993 http://dx.doi.org/10.1016/j.actamat.2007.05.009CrossrefGoogle Scholar

  • [12] Sen I., Gopinath K., Datta R., Ramamurthy U., Fatigue in Ti-6Al-4V-B alloys, Acta Mater., 2010, 58, 6799–6809 http://dx.doi.org/10.1016/j.actamat.2010.09.008CrossrefWeb of ScienceGoogle Scholar

  • [13] Chen, W., Boehlert, C.J., The elevated-temperature fatigue behavior of boron-modified Ti-6Al-4V(wt.%) castings, Mat. Sci. Eng. A-Struct., 2008, 494, 132–138 http://dx.doi.org/10.1016/j.msea.2008.04.004CrossrefGoogle Scholar

  • [14] Lutjering G., Williams J.C., Titanium, Springer Verlag, Heidelberg, 2003 Google Scholar

  • [15] Vandervoort G., Tech note, Buhler, 2004, 3 Google Scholar

  • [16] http://reindeergraphics.com/ Google Scholar

  • [17] Tiley J., Searles T., Lee E., Kar S., et al., Quantification of microstructural features in α/β titanium alloys, Mat. Sci. Eng. A-Struct., 2004, 372, 191–198 http://dx.doi.org/10.1016/j.msea.2003.12.008CrossrefGoogle Scholar

  • [18] Searles T., Tiley J., Tanner A., Williams R., et al., Rapid characterization of titanium microstructural features for specific modelling of mechanical properties, Meas. Sci. Technol., 2005, 16, 60–69 http://dx.doi.org/10.1088/0957-0233/16/1/009CrossrefGoogle Scholar

  • [19] Collins P.C., Welk B., Searles T., Tiley J., et al., Development of methods for the quantification of microstructural features in α +β-processed α/β titanium alloys, Mat. Sci. Eng. A-Struct., 2009, 508, 174–182 http://dx.doi.org/10.1016/j.msea.2008.12.038CrossrefGoogle Scholar

  • [20] Sen I., Ramamurthy U., Elastic modulus of Ti-6Al-4VxB alloys with B up to 0.55 wt%, Scripta Mater., 2010, 62, 37–40 http://dx.doi.org/10.1016/j.scriptamat.2009.09.022Google Scholar

  • [21] Gorsse S., Miracle D.B., Mechanical properties of Ti-6Al-4V/TiB composites with randomly oriented and aligned TiB reinforcements, Acta Mater., 2003, 51, 2427–2442 http://dx.doi.org/10.1016/S1359-6454(02)00510-4CrossrefGoogle Scholar

  • [22] De Meester B., Doner M., Conrad H., Deformation kinetics of the Ti-6Al-4V alloy at low temperatures, Metall. Mater. Trans. A., 1975, 6, 65–75 http://dx.doi.org/10.1007/BF02673672CrossrefGoogle Scholar

  • [23] Follansbee P.S., Gray III G.T., An analysis of the low temperature, low and high strain-sate deformation of Ti-6AI-4V, Metall. Mater. Trans. A., 1989, 20, 863–874 http://dx.doi.org/10.1007/BF02651653CrossrefGoogle Scholar

  • [24] Majorell A., Srivatsa S., Picu R.C., Mechanical behavior of Ti-6Al-4V at high and moderate temperatures — Part I: Experimental results, Mat. Sci. Eng. A-Struct., 2002, 326, 297–305 http://dx.doi.org/10.1016/S0921-5093(01)01507-6CrossrefGoogle Scholar

  • [25] Ding R., Guo Z.X., Wilson A., Microstructural evolution of a Ti-6Al-4V alloy during thermomechanical processing, Mat. Sci. Eng. A-Struct., 2002, 327, 233–245 http://dx.doi.org/10.1016/S0921-5093(01)01531-3CrossrefGoogle Scholar

  • [26] Vanderhasten M., Rabet L., Verlinden B., Ti-6Al-4V: Deformation map and modelisation of tensile behaviour, Mater. Design., 2008, 29, 1090–1098 http://dx.doi.org/10.1016/j.matdes.2007.06.005CrossrefGoogle Scholar

  • [27] Luo J., Li M., Li H., Yu W., Effect of the strain on the deformation behavior of isothermally compressed Ti-6Al-4V alloy, Mat. Sci. Eng. A-Struct., 2009, 505, 88–95 http://dx.doi.org/10.1016/j.msea.2008.11.001CrossrefGoogle Scholar

  • [28] Momeni A., Abbasi S. M., Effect of hot working on flow behavior of Ti-6Al-4V alloy in single phase and two phase regions, Mater. Design., 2010, 31, 3599–3604 http://dx.doi.org/10.1016/j.matdes.2010.01.060CrossrefWeb of ScienceGoogle Scholar

  • [29] Mironov S., Murzinova M., Zherebtsov S., Salishchev G.A., et al., Microstructure evolution during warm working of Ti-6Al-4V with a colony-α microstructure, Acta Mater., 2009, 57, 2470–2481 http://dx.doi.org/10.1016/j.actamat.2009.02.016CrossrefGoogle Scholar

  • [30] Semiatin S.L., Seetharaman V., Ghosh K., Plastic flow, microstructure evolution, and defect formation during primary hot working of titanium and titanium aluminide alloys with lamellar colony microstructures, Philos. T. Roy. Soc. A., 1999, 357, 1487–1512 http://dx.doi.org/10.1098/rsta.1999.0386CrossrefGoogle Scholar

  • [31] Semiatin S.L., Seetharaman V., Weiss I., Flow behavior and globularization kinetics during hot working of Ti-6Al-4V with a colony alpha microstructure, Mat. Sci. Eng. A-Struct., 1999, 263, 257–271 http://dx.doi.org/10.1016/S0921-5093(98)01156-3CrossrefGoogle Scholar

  • [32] Sheshacharyulu T., Medeiros S.C., Frazier W.G., Prasad Y.V.R.K, Microstructural mechanisms during hot working of commercial grade Ti-6Al-4V with lamellar starting structure, Mat. Sci. Eng. A-Struct., 2002, 325, 112–125 http://dx.doi.org/10.1016/S0921-5093(01)01448-4CrossrefGoogle Scholar

  • [33] Sen I., Ramamurthy U., High-temperature (1023 K to 1273 K [750°C to 1000°C]) plastic deformation behavior of B-modified Ti-6Al-4V alloys: temperature and strain rate effects, Metall. Mater. Trans. A., 2010, 41, 2959–2969 http://dx.doi.org/10.1007/s11661-010-0352-xCrossrefGoogle Scholar

  • [34] Soboyejo W.O., Shen W., Srivatsan T.S., An investigation of fatigue crack nucleation and growth in a Ti-6Al-4V/TiB in situ composite, Mech Mater., 2004, 36, 141–159 http://dx.doi.org/10.1016/S0167-6636(03)00036-XCrossrefGoogle Scholar

  • [35] Boehlert C.J., Cowen C.J., Tamiriskandala S., McEldowney D.J et al., In situ scanning electron microscopy observations of tensile deformation in a boron-modified Ti-6Al-4V alloy, Scripta Mater., 2006, 55, 465–468 http://dx.doi.org/10.1016/j.scriptamat.2006.05.008CrossrefGoogle Scholar

  • [36] Lutjering G., Influence of processing on microstructure and mechanical properties of (α + β) titanium alloys, Mat. Sci. Eng. A-Struct., 1998, 243, 32–45 http://dx.doi.org/10.1016/S0921-5093(97)00778-8CrossrefGoogle Scholar

  • [37] Humphreys F.J., Hatherly M., Recrystallization and related annealing phenomena, Pergamon, 2004 Google Scholar

  • [38] Dieter G.E., Mechanical Metallurgy, McGraw-Hill, New York, 1983 Google Scholar

  • [39] Prasad Y.V.R.K, Seshacharyulu T., Medeiros S.C., Frazier W.G., J. Mater. Eng. Perform., 2000, 9, 153–160 http://dx.doi.org/10.1361/105994900770346097CrossrefGoogle Scholar

About the article

Published Online: 2012-07-01

Published in Print: 2012-09-01


Citation Information: Open Engineering, Volume 2, Issue 3, Pages 347–357, ISSN (Online) 2391-5439, DOI: https://doi.org/10.2478/s13531-012-0004-6.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Stefan Cedergren, Constantinos Frangoudis, Andreas Archenti, Robert Pederson, and Göran Sjöberg
The International Journal of Advanced Manufacturing Technology, 2016, Volume 84, Number 9-12, Page 2277

Comments (0)

Please log in or register to comment.
Log in