Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Engineering

formerly Central European Journal of Engineering

Editor-in-Chief: Ritter, William

1 Issue per year


CiteScore 2017: 0.70

SCImago Journal Rank (SJR) 2017: 0.211
Source Normalized Impact per Paper (SNIP) 2017: 0.787

Open Access
Online
ISSN
2391-5439
See all formats and pricing
More options …

Adsorption kinetics and equilibrium of phenol drifts on three zeolites

Bachar Koubaissy
  • Laboratory of Materials, Catalysis, Environment and Analytical Methods, Lebanese University, Rafic Hariri Campus, Beirut, Lebanon
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joumana Toufaily
  • Laboratory of Materials, Catalysis, Environment and Analytical Methods, Lebanese University, Rafic Hariri Campus, Beirut, Lebanon
  • School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maya El-Murr
  • Laboratory of Materials, Catalysis, Environment and Analytical Methods, Lebanese University, Rafic Hariri Campus, Beirut, Lebanon
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ T. Jean Daou
  • Equipe Matériaux à Porosité Contrôlée, Institut de Science des Matériaux de Mulhouse, ENSCMu — Université de Haute Alsace — LRC CNRS 7228, 3 rue Alfred Werner, 68093, Mulhouse Cedex, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hala Hafez
  • Laboratory of Materials, Catalysis, Environment and Analytical Methods, Lebanese University, Rafic Hariri Campus, Beirut, Lebanon
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Guy Joly
  • Laboratoire de Catalyse en Chimie Organique, Faculté des Sciences, Université de Poitiers, UMR CNRS 6503, 40 Avenue du recteur Pineau, 86022, Poitiers Cedex, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Patrick Magnoux
  • Laboratoire de Catalyse en Chimie Organique, Faculté des Sciences, Université de Poitiers, UMR CNRS 6503, 40 Avenue du recteur Pineau, 86022, Poitiers Cedex, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tayssir Hamieh
  • Laboratory of Materials, Catalysis, Environment and Analytical Methods, Lebanese University, Rafic Hariri Campus, Beirut, Lebanon
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-07-01 | DOI: https://doi.org/10.2478/s13531-012-0006-4

Abstract

In this study, the sorption of phenol drifts was studied by performing batch kinetic sorption experiments. The equilibrium kinetic data was analyzed using the pseudo-second-order kinetic model. Fowler-Guggenheim model gives a perfect fitting with the isotherm data. The influence of porous structure of a zeolite particle on phenol adsorption from aqueous solutions is analyzed and discussed. The adsorption for phenol drifts on zeolite was proved to be an exothermic process. Thus the solubility of the phenolic compound and the pH of the solution play also an important role in adsorption phenomena.

The relative affinity of the phenolic compound toward the zeolite was related to the electron donor-acceptor complexes that were formed between the basic sites on the zeolite (oxygen) and hydrogens (acidic site) of the phenols. Finally zeolite seems to be an efficient adsorbent; it can be easily regenerated by methanol leaching.

Keywords: Phenol drifts; Adsorption; Zeolites; Batch adsorption

  • [1] Fleeger J.W., Carman K.R., Nisbet R.M. Indirect effect of contaminants in aquatic ecosystem, Science Total Environments, 2003, 3170, 207–233 http://dx.doi.org/10.1016/S0048-9697(03)00141-4CrossrefGoogle Scholar

  • [2] Mukherjee D., Guha D., Kumar V., Chakroborty S., Impairement of sterodgenesis and reproduction in sexually mature Cyprinus carpio by phenol and sulphide under laboratory conditions, Aquat. Toxicol., 1991, 21, 29–40 http://dx.doi.org/10.1016/0166-445X(91)90004-SCrossrefGoogle Scholar

  • [3] Knop A., Pilato L.A., Phenolic Resins — Chemistry, Applications and Performance, Springer Verlag, 1985 Google Scholar

  • [4] Ahmaruzzaman M., Adsorption of phenolic compounds on low-cost adsorbents: Advances in Colloid and Interface Science, 2008, 143, 48–67 Web of ScienceGoogle Scholar

  • [5] Wolf T.A., Demirel T., Baumann R.E., Adsorption of organic polutants on montmorillonite treated with amines, J. Water Pollut. Control Fed., 1986, 58, 68–76 Google Scholar

  • [6] Koubaissy B., Joly G., Magnoux P., Adsorption and Competitive Adsorption on Zeolites of Nitrophenol Compounds Present in Wastewater, Ind. Eng. Chem. Res., 2008, 47, 9558–9565 http://dx.doi.org/10.1021/ie8001777Web of ScienceCrossrefGoogle Scholar

  • [7] Ania C.O., Menédez J.A., Barra J.B., Pis J.J., Microwaveinduced regeneration of activated carbons polluted with phenol. A comparison with conventional thermal regeneration, Carbon, 2004, 42, 1383–1387 http://dx.doi.org/10.1016/j.carbon.2004.01.010CrossrefGoogle Scholar

  • [8] Álvarez P.M., Beltrán F.J., Gómez-Serrano V., Jaramillo J., et al., Comparison between thermal and ozone regenerations of spent activated carbon exhausted with phenol, Water Res., 2004, 38, 2155–2165 http://dx.doi.org/10.1016/j.watres.2004.01.030CrossrefGoogle Scholar

  • [9] Damjanovic L., Rakic V., Rac V., Stošic D., et al., The investigation of phenol removal from aqueous solutions by zeolites as solid adsorbents, J. Hazard. Mater., 2010, 184, 477–484 http://dx.doi.org/10.1016/j.jhazmat.2010.08.059Web of ScienceCrossrefGoogle Scholar

  • [10] Pan B.C., Zhang X., Zhang W.M., Zhang Q.X., Adsorption of phenolic compounds from aqueous solution onto a macroporous polymer and its aminated derivative: isotherm analysis, J. Hazard. Mater. B., 2005, 121, 233–241 http://dx.doi.org/10.1016/j.jhazmat.2004.10.027CrossrefGoogle Scholar

  • [11] Koubaissy B., Joly G., Batonneau-Gener I., Magnoux P., Adsorptive Removal of Aromatic Compounds Present in Wastewater by Using Dealuminated Faujasite Zeolite, Ind. Eng. Chem. Res., 2011, 50, 5705–5713 http://dx.doi.org/10.1021/ie100420qWeb of ScienceCrossrefGoogle Scholar

  • [12] Schick J., Daou T.J., Caullet P., Paillaud J-L., et al., Surfactant-modified MFI nanosheets: a high capacity anion-exchanger., Chem. Commun., 2011, 47, 902–904 http://dx.doi.org/10.1039/c0cc03604hCrossrefWeb of ScienceGoogle Scholar

  • [13] Parida S., Dash S., Patel S., Mishra B., Adsorption of organic molecules on silica surface, Advances in Colloid and Interface Science, 2006, 121, 77–110 http://dx.doi.org/10.1016/j.cis.2006.05.028CrossrefGoogle Scholar

  • [14] Johnston C.T., Sheng G., Teppen B.J., Boyd, S.A., et al., Spectroscopic study of dinitrophenol herbicide sorption on smectite, Environ. Sci. Technol. 2002, 36, 5067–5074 http://dx.doi.org/10.1021/es025760jCrossrefGoogle Scholar

  • [15] Khalid M., Joly G., Renaud A., Magnoux P., Removal of phenol from water by adsorption using zeolites, Ind. Eng. Chem. Res. 2004, 43, 5275–5280 http://dx.doi.org/10.1021/ie0400447CrossrefGoogle Scholar

  • [16] Fowler R.H., Guggenheim E.A., Statistical thermodynamics, theory of the properties of Matter in Equil. Cambridge Press: Cambridge, U.K., 1965 Google Scholar

  • [17] McKay G., McKee S., Walters H.R.J., Solid-liquid adsorption based on external mass transfer, macropore and micropore diffusion, Chem. Eng. Sci., 1987, 42, 1145–1151 http://dx.doi.org/10.1016/0009-2509(87)80064-7CrossrefGoogle Scholar

  • [18] Weber J.R., Morris J.C., Kinetics of adsorption on carbon from solution, Journal of Sanitary Engineering Division, 1963, 89, 31–39 Google Scholar

  • [19] Aksu Z., Kabasakal E., Batch adsorption of 2,4-dichlorophenoxy-acetic acid,2,4-D, from aqueous solution by granular activated carbon, Sep. Pur. Technol., 2004, 35, 223–240 http://dx.doi.org/10.1016/S1383-5866(03)00144-8Google Scholar

  • [20] Ho Y.S., McKay G., Pseudo-second order model for sorption processes, Process Biochem., 1999, 34, 451–465 http://dx.doi.org/10.1016/S0032-9592(98)00112-5CrossrefGoogle Scholar

  • [21] Blanchard G., Maunaye M., Martin G., Removal of heavy metals from waters by means of natural zeolites, Water Res., 1984, 18, 1501–1507 http://dx.doi.org/10.1016/0043-1354(84)90124-6CrossrefGoogle Scholar

  • [22] Lagergren S., About the theory of so-called adsorption of soluble substances, Kungliga Svenska Vetenskapsakademiens, Handlingar, 1898, 24, 1–39 Google Scholar

  • [23] Dursun G., Giçek H., Dursun A., Adsorption of phenol from aqueous solution by using carbonised beet pulp, J. Hazard. Mater. B, 2005, 125, 175–182 http://dx.doi.org/10.1016/j.jhazmat.2005.05.023CrossrefGoogle Scholar

  • [24] Liu J.C., Huang C.P., Adsorption of some substituted phenols onto hydrous ZnS, J. Coil. Interface Sci., 1992, 153, 167–176 http://dx.doi.org/10.1016/0021-9797(92)90308-9CrossrefGoogle Scholar

  • [25] Moreno-Castilla B., Rivera-Utrilla J., López-Ramón M.V., Carrasco-Marín F. adsorption of some substituted phenols on activated carbons from a bituminous coal, Carbon, 1995, 33, 845–851 http://dx.doi.org/10.1016/0008-6223(94)00182-YCrossrefGoogle Scholar

  • [26] Wang Y., Mu Y., Quan-Bao Z., Han-Qing Y., Isotherms, kinetics and thermodynamics of dye biosorption by anaerobic sludge, Sep. Pur. Technol., 2006, 50, 1–7 http://dx.doi.org/10.1016/j.seppur.2005.10.012CrossrefGoogle Scholar

  • [27] Kumar K.V., Pseudo-second order models for the adsorption of safranin onto activated carbon: comparison of linear and non-linear regression methods, J. Hazard. Mater., 2007, 142, 564–567 http://dx.doi.org/10.1016/j.jhazmat.2006.08.018Web of ScienceCrossrefGoogle Scholar

  • [28] Chang C-F., Chang C-Y., Chen K-H., Tsai W-T., et al., Adsorption of naphthalene on zeolite from aqueous solution, J. Colloid Interface Sci., 2004, 277, 29–34 http://dx.doi.org/10.1016/j.jcis.2004.04.022CrossrefGoogle Scholar

  • [29] Srivastava V.C., Swamy M.M., Malli D., Prasa B., et al., Adsorptive removal of phenol by bagasse fly ash and activated carbon: Equilibrium, kinetics and thermodynamics, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2006, 272, 89–104 http://dx.doi.org/10.1016/j.colsurfa.2005.07.016CrossrefGoogle Scholar

  • [30] Yoshitake H., Yokoi T., Tatsumi T., Oxyanion Adsorptions by Mono-, Di-, and Triamino-Functionalized MCM-48, Bull. Chem. Soc. Jpn., 2003, 76, 847–852 http://dx.doi.org/10.1246/bcsj.76.847CrossrefGoogle Scholar

  • [31] Bois L., Bonhommé A., Ribes A., Pais B., et al., Functionalised Silica for Heavy Metal Ions. Adsorption, Colloids Surf. A Physicochem. Eng. Aspects, 2003, 221, 221–230 http://dx.doi.org/10.1016/S0927-7757(03)00138-9CrossrefGoogle Scholar

  • [32] Abkowicz-Bienko A.J., Latajka Z., Bienko D.C., Michalska D., Theoretical infrared spectrum and revised assignment for para-nitrophenol. Density functional theory studies, Chem. Phys., 1999, 250, 123–129 http://dx.doi.org/10.1016/S0301-0104(99)00296-7CrossrefGoogle Scholar

  • [33] Kennedy L.J., Vijaya J.J., Kayalvizhi K., Sekaran G., Adsorption of phenol from aqueous solutions using mesoporous carbon prepared by two-stage process, Chem. Eng. J., 2007, 132, 279–287 http://dx.doi.org/10.1016/j.cej.2007.01.009CrossrefGoogle Scholar

  • [34] Radhika M., Palanivelu K., Adsorptive removal of chlorophenols from aqueous solution by low cost adsorbent-kinetics and isotherm analysis, J. Hazard. Mater., 2006, 138, 116–124 http://dx.doi.org/10.1016/j.jhazmat.2006.05.045CrossrefGoogle Scholar

  • [35] Srivastava V.C., Swamy M.M., Mall I.D., Prasad B., et al., Adsorptive removal of phenol by bagasse fly ash and activated carbon: equilibrium, kinetics and thermodynamics, Colloids Surf., A: Physicochem. Eng. Aspects, 2006, 272, 89–104 http://dx.doi.org/10.1016/j.colsurfa.2005.07.016CrossrefGoogle Scholar

  • [36] Wei Q., Nakato T., Competitive adsorption of phenols on organically modified layered hexaniobate K4Nb6O17, Microporous and Mesoporous Materials, 2006, 96, 84–92 http://dx.doi.org/10.1016/j.micromeso.2006.06.028CrossrefGoogle Scholar

  • [37] Dursun A.Y., Kalayci C.S., Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto chitin, J. Hazard. Mater., 2005, 123, 151–157 http://dx.doi.org/10.1016/j.jhazmat.2005.03.034CrossrefGoogle Scholar

  • [38] Ming Z., Long C., Cai P., Xing Z., et al., Synergistic adsorption of phenol from aqueous solution onto polymeric adsorbents, J. Hazard. Mater. B, 2006, 128, 123–129 http://dx.doi.org/10.1016/j.jhazmat.2005.03.036CrossrefGoogle Scholar

  • [39] Tor A., Cengeloglu Y., Aydin M., Mustafa E., Removal of phenol from aqueous phase by using neutralized red mud, J. Colloid Interface Sci., 2006, 300, 498–503 http://dx.doi.org/10.1016/j.jcis.2006.04.054CrossrefGoogle Scholar

About the article

Published Online: 2012-07-01

Published in Print: 2012-09-01


Citation Information: Open Engineering, Volume 2, Issue 3, Pages 435–444, ISSN (Online) 2391-5439, DOI: https://doi.org/10.2478/s13531-012-0006-4.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Khemmakorn Gomonsirisuk and Thanakorn Wasanapiarnpong
Key Engineering Materials, 2015, Volume 659, Page 304
[2]
Tran Ngoc Linh, Hirotaka Fujita, and Akiyoshi Sakoda
Adsorption, 2016, Volume 22, Number 7, Page 1001
[3]
Bachar Koubaissy, Joumana Toufaily, Safaa Cheikh, Malak Hassan, and Tayssir Hamieh
Open Engineering, 2014, Volume 4, Number 1
[4]
Joumana Toufaily, Bachar Koubaissy, Lina Kafrouny, Hussein Hamad, Patrick Magnoux, Leila Ghannam, Ali Karout, Hassan Hazimeh, Ghinwa Nemra, Moustafa Hamieh, Nawal Ajouz, and Tayssir Hamieh
Open Engineering, 2013, Volume 3, Number 1

Comments (0)

Please log in or register to comment.
Log in