Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Engineering

formerly Central European Journal of Engineering

Editor-in-Chief: Ritter, William

1 Issue per year


CiteScore 2017: 0.70

SCImago Journal Rank (SJR) 2017: 0.211
Source Normalized Impact per Paper (SNIP) 2017: 0.787

Open Access
Online
ISSN
2391-5439
See all formats and pricing
More options …

Crystal growth of organic energetic materials: pentaerythritol tetranitrate

Gengxin Zhang / Brandon Weeks / Xin Zhang
Published Online: 2012-07-01 | DOI: https://doi.org/10.2478/s13531-012-0012-6

Abstract

The energy output performance and thermal stability of organic energetic materials have a strong dependence on the porosity, particle morphology, and micro-scale crystal structure. This paper reviews the growth habit of pure pentaerythritol tetranitrate (PETN) crystals and the effect of metal impurities on microcrystal morphology of PETN films. The pure crystal growth shows that PETN molecules diffuse on the surface and nucleate in a two-dimensional layer-by-layer fashion; the final structure is controlled by the deposition flux. Also, the effect of metal cation impurities has a strong impact on the thermal stability and crystal structure, and is dependent on the doping level.

Keywords: Organic thin film; Crystal growth; Dendrite growth; 2-D nucleation

  • [1] Dlott D.D., Thinking big (and small) about energetic materials, Mater. Sci. Technol., 2006, 22(4), 463–473. http://dx.doi.org/10.1179/174328406X83987CrossrefGoogle Scholar

  • [2] Popov I.A., Chen H., Kharybin O.N., Nikolaev E.N., Cooks R.G., Detection of explosives on solid surfaces by thermal desorption and ambient ion/molecule reactions, Chem. Commun., 2005, 15, 1953–1955. Google Scholar

  • [3] Halfpenny P.J., Roberts K.J., Sherwood J.N., Dislocations in energetic materials. Part 3. Etching and microhardness studies of pentaerythritol tetranitrate and cyclotrimethylenetrinitramine, J. Mater. Sci., 1984, 19(5), 1629–1637. http://dx.doi.org/10.1007/BF00563061CrossrefGoogle Scholar

  • [4] Nafday O.A., Pitchimani R., Weeks B.L., Haaheim J., Patterning high explosives at the nanoscale, Propell. Explos. Pyrotech., 2006, 31(5), 376–381. http://dx.doi.org/10.1002/prep.200600051CrossrefGoogle Scholar

  • [5] Blackburn J.H.R., R.J., Exploding wire detonators: Sweeping-image photographs of the exploding bridgewire intiation of PETN, in: Expoloding wires Plenum Press, New York, 1964. Google Scholar

  • [6] Simon B., Boistelle R., Crystal growth from low temperature solutions, J. Cryst. Growth, 1981, 52(2), 779–788. http://dx.doi.org/10.1016/0022-0248(81)90376-6CrossrefGoogle Scholar

  • [7] Laudise R.A., The growth of single crystals, Prentice-Hall, Englewood Cliffs, NJ, 1970. Google Scholar

  • [8] Nalwa H.S., Encyclopedia of nanoscience and nanotechnology, American Scientific Publishers, Stevenson Ranch, Calif., 2004. Google Scholar

  • [9] Braun H.-G., Meyer E., Wang M., Dendritic growth of polyethylene oxide on patterned surfaces, Lecture Notes in Physics, 2003, 606 (Polymer Crystallization), 238–251. Google Scholar

  • [10] Nishikata S., Sazaki G., Sadowski J.T., Al-Mahboob A., Nishihara T., Fujikawa Y., Suto S., Sakurai T., Nakajima K., Polycrystalline domain structure of pentacene thin films epitaxially grown on a hydrogen-terminated Si(111) surface, Phys. Rev. B, 2007, 76(16), 165424. http://dx.doi.org/10.1103/PhysRevB.76.165424CrossrefGoogle Scholar

  • [11] Petrov I., Barna P.B., Hultman L., Greene J.E., Microstructural evolution during film growth, J. Vacu. Sci. Technol. A, 2003, 21(5), S117–S128. http://dx.doi.org/10.1116/1.1601610CrossrefGoogle Scholar

  • [12] Dick J.J., Mulford R.N., Spencer W.J., Pettit D.R., Garcia E., Shaw D.C., Shock response of pentaerythritol tetranitrate single crystals, J. Appl. Phys., 1991, 70(7), 3572–3587. http://dx.doi.org/10.1063/1.349253CrossrefGoogle Scholar

  • [13] Trotter J., Bond lengths and angles in pentaerythritol tetranitrate, Acta Crystallogr., 1963, 16(7), 698–699. http://dx.doi.org/10.1107/S0365110X6300178XCrossrefGoogle Scholar

  • [14] Partridge A., Walker S., Armitt D., Detection of Impurities in Organic Peroxide Explosives from Precursor Chemicals, Aus. J. Chem., 63(1), 30–37. Google Scholar

  • [15] Pitchimani R., Hope-Weeks L.J., Zhang G., Weeks B.L., Effect of Impurity Doping on the Morphology of Pentaerythritol Tetranitrate Crystals, J. Enger. Mater., 2007, 25(4), 203–212. http://dx.doi.org/10.1080/07370650701567033CrossrefGoogle Scholar

  • [16] Zepeda-Ruiz L.A., Maiti A., Gee R., Gilmer G.H., Weeks B.L., Size and habit evolution of PETN crystals — a lattice Monte Carlo study, J. Cryst. Growth, 2006, 291(2), 461–467. http://dx.doi.org/10.1016/j.jcrysgro.2006.02.052CrossrefGoogle Scholar

  • [17] Burnham A.K., Qiu S.R., Pitchimani R., Weeks B.L., Comparison of kinetic and thermodynamic parameters of single crystal pentaerythritol tetranitrate using atomic force microscopy and thermogravimetric analysis: Implications on coarsening mechanisms, J. Appl. Phys., 2009, 105(10), 104312–104316. http://dx.doi.org/10.1063/1.3129504CrossrefGoogle Scholar

  • [18] Zhang G., Bhattacharia S.K., Weeks B.L., Effect of zinc doping on pentaerythritol tetranitrate single crystals, Cryst. Res. Technol., 2010, 45(7), 732–736. http://dx.doi.org/10.1002/crat.201000136CrossrefGoogle Scholar

  • [19] Lin P.H., Khare R., Weeks B.L., Gee R.H., Molecular modeling of diffusion on a crystalline pentaerythritol tetranitrate surface, Appl. Phys. Lett., 2007, 91(104107). Google Scholar

  • [20] Kruppa G.H.B., R. Highley, A., Petaerythritol Tetranitrate Explosives: Thermal decomposition and Impurities Studied by Accurate Mass ESI and Chemical Ionization (CI) FTMS, in: 50th ASMS conference on Mass Spectrometry and Allied Topics (2002 Orlando), 2002, 39–40 Google Scholar

  • [21] Li J.J., Wang J.C., Xu Q., Yang G.C., Effect of foreign particles on the dendritic growth in phase-field theory, Acta Phys. Sinica, 2007, 56(3), 1514–1519. Google Scholar

  • [22] Berkovitch-Yellin Z., Van Mil J., Addadi L., Idelson M., Lahav M., Leiserowitz L., Crystal morphology engineering by “tailor-made” inhibitors; a new probe to fine intermolecular interactions, J. Am. Chem. Soc., 1985, 107(11), 3111–3122. http://dx.doi.org/10.1021/ja00297a017CrossrefGoogle Scholar

  • [23] Sangwal K., Effects of impurities on crystal growth processes, Prog. Cryst. Growth Charact. Mater., 1996, 32(1–3), 3–43. http://dx.doi.org/10.1016/0960-8974(96)00008-3CrossrefGoogle Scholar

  • [24] Davey R.J., The control of crystal habit, Ind. Cryst., Proc. Symp., 7th, 1979, 169–183. Google Scholar

  • [25] Buckley H.E., Problems connected with crystal growth, Manchester Memoirs, 1938–1939, 83, 31–62. Google Scholar

  • [26] Rogers R.N., Dinegar R.H., Thermal analysis of some crystal habits of pentaerythritol tetranitrate, Thermo. Acta, 1972, 3(5), 367–378. http://dx.doi.org/10.1016/0040-6031(72)87050-3CrossrefGoogle Scholar

  • [27] Burton W.K., Cabrera N., Frank F.C., Dislocations in crystal growth, Nature 1949, 163, 398–399. http://dx.doi.org/10.1038/163398a0CrossrefGoogle Scholar

  • [28] Burton W.K., Cabrera N., Grank E.C., The growth of crystals and equilibrium structure of their surfaces, Trans. Roy. Soc., 1951, A243, 299–358. http://dx.doi.org/10.1098/rsta.1951.0006CrossrefGoogle Scholar

  • [29] Gilmer G.H., Ghez R., Cabrera N., Analysis of combined surface and volume diffusion processes in crystal growth, J. Cryst. Growth, 1971, 8(1), 79–93. http://dx.doi.org/10.1016/0022-0248(71)90027-3CrossrefGoogle Scholar

  • [30] Pina C.M., Bosbach D., Prieto M., Putnis A., Microtopography of the barite (0 0 1) face during growth, AFM observations and PBC theory, J. Cryst. Growth, 1998, 187(1), 119–125. http://dx.doi.org/10.1016/S0022-0248(97)00858-0Google Scholar

  • [31] Risthaus P., Bosbach D., Becker U., Putnis A., Barite scale formation and dissolution at high ionic strength studied with atomic force microscopy, Colloid. Surf A, 2001, 191(3), 201–214. http://dx.doi.org/10.1016/S0927-7757(00)00843-8CrossrefGoogle Scholar

  • [32] Vavouraki A.I., Putnis C.V., Putnis A., Koutsoukos P.G., Crystal Growth and Dissolution of Calcite in the Presence of Fluoride Ions: An Atomic Force Microscopy Study, Cryst. Growth & Design, 2009, 10.1021/cg900131g Google Scholar

  • [33] Zhao Q.L., Huang Y.S., Guan T.T., Lin J.Z., Effects of Dislocations on Growth Habit in Crystal of Thallium Acid Phthalate, Chin. Phys. Lett., 1993, 10(8), 488–491. Google Scholar

  • [34] Vekilov P.G., Monaco L.A., Thomas B.R., Stojanoff V., Rosenberger F., Repartitioning of NaCl and protein impurities in lysozyme crystallization, Acta Crystallogr. D, 1996, 52, 785–798. http://dx.doi.org/10.1107/S0907444996003265CrossrefGoogle Scholar

  • [35] Lyons J.L., Janotti A., Van de Walle C.G., Role of Si and Ge as impurities in ZnO, Phys. Rev. B, 2009, 80(20), 205113–205115. http://dx.doi.org/10.1103/PhysRevB.80.205113CrossrefGoogle Scholar

  • [36] Yang G., Bolotnikov A.E., Cui Y., Camarda G.S., Hossain A., James R.B., Impurity gettering effect of Te inclusions in CdZnTe single crystals, J. Cryst. Growth 2008, 311(1), 99–102. http://dx.doi.org/10.1016/j.jcrysgro.2008.09.201CrossrefGoogle Scholar

  • [37] Pitchimani R., Burnham A.K., Weeks B.L., Quantitative thermodynamic analysis of sublimation rates using an atomic force microscope, J. Phys. Chem. B, 2007, 111(31), 9182–9185. http://dx.doi.org/10.1021/jp073516eCrossrefGoogle Scholar

  • [38] Harkins W.D., The physical chemistry of surface films, Reinhold, New York, 1952. Google Scholar

  • [39] Grabow M.H., Gilmer G.H., Thin-Film Growth Modes, Wetting and Cluster Nucleation, Surf. Sci., 1988, 194(3), 333–346. http://dx.doi.org/10.1016/0039-6028(88)90858-8CrossrefGoogle Scholar

  • [40] Frank F.C., Van der Merwe J.H., One-dimensional dislocations. I. Static theory, Proc. R. Soc. London, A, 1949, 198, 205–216. http://dx.doi.org/10.1098/rspa.1949.0095CrossrefGoogle Scholar

  • [41] Stranski I.N., Kr’stanov L., Theory of orientation separation of ionic crystals, Sitzungsberichte der Akademie der Wissenschaften in Wien, Mathematisch-Naturwissenschaftliche Klasse, Abteilung 2B: Chemie, 1938, 146, 797–810. Google Scholar

  • [42] Volmer M., Weber A., Nucleus formation in supersaturated systems, Z. Phys. Chem., 1926, 119, 277–301. Google Scholar

  • [43] Evans J.W., Thiel P.A., Bartelt M.C., Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds, Surf. Sci. Rep., 2006, 61(1–2), 1–128. http://dx.doi.org/10.1016/j.surfrep.2005.08.004CrossrefGoogle Scholar

  • [44] Verlaak S., Steudel S., Heremans P., Janssen D., Deleuze M.S., Nucleation of organic semiconductors on inert substrates, Phys. Rev. B, 2003, 68(19), 195409. http://dx.doi.org/10.1103/PhysRevB.68.195409CrossrefGoogle Scholar

  • [45] Biscarini F., Zamboni R., Samori P., Ostoja P., Taliani C., Growth of Conjugated Oligome Thin-films Studied by Atomic-Force Microscopy, Phys. Rev. B, 1995, 52(20), 14868–14877. http://dx.doi.org/10.1103/PhysRevB.52.14868CrossrefGoogle Scholar

  • [46] Kaefer D., Witte G., Growth of crystalline rubrene films with enhanced stability, Phys. Chem. Phys., 2005, 7(15), 2850–2853. http://dx.doi.org/10.1039/b507620jCrossrefGoogle Scholar

  • [47] Burrows P.E., Forrest S.R., Sapochak L.S., Schwartz J., Fenter P., Buma T., Ban V.S., Forrest J.L., Organic vapor-phase depostion — a new method for the grwoth of organic thin-films with large optical nonlinearities, J. Cryst. Growth, 1995, 156(1–2), 91–98. http://dx.doi.org/10.1016/0022-0248(95)00310-XCrossrefGoogle Scholar

  • [48] Michael H., Nico M., Organic Vapor Phase Deposition, in: K. Dr. Hagen (Ed.) Org. Electron., 2006, 203–232. Google Scholar

  • [49] Forrest S.R., Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques, Chem. Rev., 1997, 97(6), 1793–1896. http://dx.doi.org/10.1021/cr941014oCrossrefGoogle Scholar

  • [50] Blanchet G.B., Fincher C.R., Malajovich I., Laser evaporation and the production of pentacene films, J. Appl. Phys., 2003, 94(9), 6181–6184. http://dx.doi.org/10.1063/1.1601681CrossrefGoogle Scholar

  • [51] Miller G.D., Haws L.D., Dinegar R.H., Kinetics of the thermal decomposition of solid PETN, Symp. (Int.) Combust., 1982, 19, 701–705. http://dx.doi.org/10.1016/S0082-0784(82)80245-2CrossrefGoogle Scholar

  • [52] Volmer M., Weber A., Nucleus formation in supersaturated systems, Z. Physik. Chem., 1926, 119, 277–301. Google Scholar

  • [53] Zhang G., Weeks B.L., Inducing dendrite formation using an atomic force microscope tip, Scanning, 2008, 30(3), 228–231. http://dx.doi.org/10.1002/sca.20108CrossrefGoogle Scholar

  • [54] Theis W., Bartelt N.C., Tromp R.M., Chemical Potential Maps and Spatial Correlations in 2D-Island Ripening on Si(001), Phys. Rev. Lett., 1995, 75(18), 3328. http://dx.doi.org/10.1103/PhysRevLett.75.3328CrossrefGoogle Scholar

  • [55] Zhang G., Weeks B.L., Gee R., Maiti A., Fractal growth in organic thin films: Experiments and modeling, Appl. Phys. Lett., 2009, 95(20), 204101. http://dx.doi.org/10.1063/1.3238316CrossrefGoogle Scholar

  • [56] Witten T.A., Sander L.M., Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon, Phys. Rev. Lett., 1981, 47(19), 1400–1403. http://dx.doi.org/10.1103/PhysRevLett.47.1400CrossrefGoogle Scholar

  • [57] Heringdorf F.J.M.Z., Reuter M.C., Tromp R.M., Growth dynamics of pentacene thin films, Nature, 2001, 412(6846), 517–520. http://dx.doi.org/10.1038/35087532CrossrefGoogle Scholar

  • [58] Barabási A.-L., Stanley H.E., Fractal concepts in surface growth, Press Syndicate of the University of Cambridge, New York, 1995. http://dx.doi.org/10.1017/CBO9780511599798CrossrefGoogle Scholar

  • [59] Locklin J., Roberts M.E., Mannsfeld S.C.B., Bao Z., Optimizing the Thin Film Morphology of Organic Field-Effect Transistors: The Influence of Molecular Structure and Vacuum Deposition Parameters on Device Performance, J. Macromol. Sci. Polymer Rev., 2006, 46(1), 79–101. http://dx.doi.org/10.1080/15321790500471244CrossrefGoogle Scholar

  • [60] Ruiz R., Choudhary D., Nickel B., Toccoli T., Chang K.C., Mayer A.C., Clancy P., Blakely J.M., Headrick R.L., Iannotta S., Malliaras G.G., Pentacene thin film growth, Chem. Mat., 2004, 16(23), 4497–4508. http://dx.doi.org/10.1021/cm049563qCrossrefGoogle Scholar

  • [61] Kukushkin S.A., Osipov A.V., Kinetics of thin film nucleation from multi-component vapor, J. Phys. Chem. Solids, 1995, 56, 831–838. http://dx.doi.org/10.1016/0022-3697(95)80022-0CrossrefGoogle Scholar

  • [62] Darby T.P., Wayman C.M., Nucleation and growth of gold films on graphite: I. Effects of substrate condition and evaporation rate, J. Cryst. Growth, 1975, 28(1), 41–52. http://dx.doi.org/10.1016/0022-0248(75)90025-1CrossrefGoogle Scholar

  • [63] Wayman C.M., Darby T.P., Nucleation and growth of gold films on graphite: II. The effect of substrate temperature, J. Cryst. Growth, 1975, 28, 53–67. http://dx.doi.org/10.1016/0022-0248(75)90026-3CrossrefGoogle Scholar

  • [64] Métois J.J., Heyraud J.C., Mechanisms of morphological change during the establishment of the equilibrium shape; Lead on graphite, J. Cryst. Growth, 1982, 57(3), 487–492. http://dx.doi.org/10.1016/0022-0248(82)90063-XCrossrefGoogle Scholar

  • [65] Amar J.G., Family F., Lam P.-M., Dynamic scaling of the island-size distribution and percolation in a model of submonolayer molecular-beam epitaxy, Phys. Rev. B, 1994, 50(12), 8781. http://dx.doi.org/10.1103/PhysRevB.50.8781CrossrefGoogle Scholar

  • [66] Amar J.G., Family F., Critical Cluster Size: Island Morphology and Size Distribution in Submonolayer Epitaxial Growth, Phys. Rev. Lett., 1995, 74(11), 2066. http://dx.doi.org/10.1103/PhysRevLett.74.2066CrossrefGoogle Scholar

  • [67] Zorba S., Shapir Y., Gao Y.L., Fractal-mound growth of pentacene thin films, Phys. Rev. B, 2006, 74(24), 245410. http://dx.doi.org/10.1103/PhysRevB.74.245410CrossrefGoogle Scholar

  • [68] Zhang G., Weeks B.L., Surface morphology of organic thin films at various vapor flux, Appl. Surf. Sci., 2009, 256(8), 2363–2366. http://dx.doi.org/10.1016/j.apsusc.2009.10.068CrossrefGoogle Scholar

  • [69] Messier R., Yehoda J.E., Geometry of thin-film morphology, J. Appl. Phys., 1985, 58(10), 3739–3746. http://dx.doi.org/10.1063/1.335639CrossrefGoogle Scholar

  • [70] Zhang G., Weeks B.L., Holtz M., Application of dynamic scaling to the surface properties of organic thin films: Energetic materials, Sur. Sci., 2011, 605(3–4), 463–467. http://dx.doi.org/10.1016/j.susc.2010.11.018CrossrefGoogle Scholar

  • [71] Zhao Y.P., Fortin J.B., Bonvallet G., Wang G.C., Lu T.M., Kinetic roughening in polymer film growth by vapor deposition, Phys. Rev. Lett., 2000, 85(15), 3229–3232. http://dx.doi.org/10.1103/PhysRevLett.85.3229CrossrefGoogle Scholar

  • [72] Thi T.H.V., Rouet J.L., Brault P., Bauchire J.M., Cordier S., Josserand C., A continuous non-linear shadowing model of columnar growth, J. Phys. D: Appl. Phys., 2008, 41(2), 022003. http://dx.doi.org/10.1088/0022-3727/41/2/022003CrossrefGoogle Scholar

About the article

Published Online: 2012-07-01

Published in Print: 2012-09-01


Citation Information: Open Engineering, Volume 2, Issue 3, Pages 336–346, ISSN (Online) 2391-5439, DOI: https://doi.org/10.2478/s13531-012-0012-6.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Xin Zhang and Brandon L. Weeks
Journal of Hazardous Materials, 2014, Volume 268, Page 224
[3]
Xin Zhang and Brandon L. Weeks
Thin Solid Films, 2014, Volume 550, Page 135
[4]
Roman V. Tsyshevsky, Onise Sharia, and Maija M. Kuklja
The Journal of Physical Chemistry C, 2013, Volume 117, Number 35, Page 18144

Comments (0)

Please log in or register to comment.
Log in