Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Engineering

formerly Central European Journal of Engineering

Editor-in-Chief: Ritter, William

CiteScore 2017: 0.70

SCImago Journal Rank (SJR) 2017: 0.211
Source Normalized Impact per Paper (SNIP) 2017: 0.787

ICV 2017: 100.00

Open Access
See all formats and pricing
More options …

Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC)

Farhad Aslani
  • Centre for Built Infrastructure Research, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, Australia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shami Nejadi
  • Centre for Built Infrastructure Research, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, Australia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-07-01 | DOI: https://doi.org/10.2478/s13531-012-0015-3


Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of the self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking. Although the available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates the bond characteristics between steel fiber and SCC firstly. Based on the available experimental results, the current analytical steel fiber pullout model (Dubey 1999) is modified by considering the different SCC properties and different fiber types (smooth, hooked) and inclination. In order to take into account the effect of fiber inclination in the pullout model, apparent shear strengths (τ (app)) and slip coefficient (β) are incorporated to express the variation of pullout peak load and the augmentation of peak slip as the inclined angle increases. These variables are expressed as functions of the inclined angle (ϕ). Furthurmore, steel-concrete composite floors, reinforced concrete floors supported by columns or walls and floors on an elastic foundations belong to the category of structural elements in which the conventional steel reinforcement can be partially replaced by the use of steel fibers. When discussing deformation capacity of structural elements or civil engineering structures manufactured using SFRSCC, one must be able to describe thoroughly both the behavior of the concrete matrix reinforced with steel fibers and the interaction between this composite matrix and discrete steel reinforcement of the conventional type. However, even though the knowledge on bond behavior is essential for evaluating the overall behavior of structural components containing reinforcement and steel fibers, information is hardly available in this area. In this study, bond characteristics of deformed reinforcing steel bars embedded in SFRSCC is investigated secondly.

Keywords: Bond characteristics; Steel fiber reinforced self-compacting concrete; Pullout test; Inclined fiber; Deformed reinforcing steel bar

  • [1] ACI Committee 544. State-of-the-Art Report on Fiber Reinforced Concrete — ACI 544.1R-96 (Reapproved 2002),tACI Manual of Concrete Practice, Part 6, 2008, ACI544.1R-7 — ACI544.1R-24, 2008 Google Scholar

  • [2] Mandel J., Wei S., Said S., Studies of the properties of the fiber-matrix interface in steel fiber reinforced mortar, ACI Mater. J., 84(2), 1987, 101–109 Google Scholar

  • [3] Stang H., Shah S.P., Failure of fiber-reinforced composites by pull-out fracture, J. Mater. Sci., 21(3), 1986, 953–957 http://dx.doi.org/10.1007/BF01117378CrossrefGoogle Scholar

  • [4] Armelin H.S., Banthia N., Predicting the flexural post cracking performance of steel fiber reinforced concrete from the pullout of single fibers. ACI Mater. J., 94(1), 1997, 18–31 Google Scholar

  • [5] Li V.C., Wu C., Wang S., Ogawa A., et al., Interface tailoring for strain-hardening polyvinyl alcoholengineered cementitious composites (PVA-ECC), ACI Mater. J., 99(5), 2002, 463–472 Google Scholar

  • [6] Lee Y., Kang S.-T., Kim J.-K., Pull-out behavior of inclined steel fiber in an ultra-high strength cementitious matrix, Constr. Build. Mater., 24, 2010, 2030–2041 http://dx.doi.org/10.1016/j.conbuildmat.2010.03.009CrossrefGoogle Scholar

  • [7] Chanvillard G., Aïtcin P.C., Pull-out behavior of corrugated steel fibers, Adv. Cement. Mater., 4(1), 1996, 28–41 Google Scholar

  • [8] Sujivorakul C., Waas A.M., Guerrero P., Pull-out of a smooth fiber with an end anchorage. ASCE J. Mater. Civ. Eng., 126(9), 2000, 986–993 Google Scholar

  • [9] Ezeldin A.S., Balaguru B.N., Bond behavior of normal and high-strength fiber reinforced concrete, ACI Mater. J., 86(5), 1989, 515–524 Google Scholar

  • [10] Shannag M.J., Brincker R., Hansen W., Interfacial (fiber-matrix) properties of high-strength mortar (150 MPa) from fiber pullout, ACI Mater. J., 93(5), 1996, 1–7 Google Scholar

  • [11] Shannag M.J., Brincker R., Hansen W., Pullout behavior of steel fibers from cement-based composites, Cem. Concr. Res., 27(6), 1997, 925–936 http://dx.doi.org/10.1016/S0008-8846(97)00061-6CrossrefGoogle Scholar

  • [12] Orange G., Acker P., Vernet C., A new generation of UHP concrete: ductal damage resistance and micromechanical analysis. In: Third international workshop on high performance fiber reinforced cement composites (HPFRCC3), Mainz, Germany, 1999, 101–111 Google Scholar

  • [13] Morton J., Groves G.W., The cracking of composites consisting of discontinuous reinforced concrete, J. Mater. Sci., 9(9), 1974, 1436–1445 http://dx.doi.org/10.1007/BF00552929CrossrefGoogle Scholar

  • [14] Bartos P., Review paper: bond in fibre reinforced cements and concretes, Int. J. Cem. Comp Liw. Concr., 3(3), 1981, 159–77 Google Scholar

  • [15] Li V.C., Wang Y., Baker S., Effect of inclining angle, bundling and surface treatment on synthetic fiber pullout from a cement matrix Comp, 21(2), 1990, 132–140 Google Scholar

  • [16] Wang Y., Li V.C., Backer S., Analysis of synthetic fiber pullout from a cement matrix. In: Mindess S, Shah SP, editors, Bonding in cementitious composites, MRS symposium proceedings, Pittsburgh (PA): Materials Research Society, 1988, 159–165 Google Scholar

  • [17] Stang H., Li V.C., Krenchel H., Design and structural applications of stress-crack width relations in fiber reinforced concrete, Mater. Struct., 28(4), 1995, 210–219 http://dx.doi.org/10.1007/BF02473251CrossrefGoogle Scholar

  • [18] Lin Z., Kanda T., Li V.C., On interface property characterization and performance of fiber-reinforced cementitious composites, Concr. Sci. Eng., 1, 1999, 173–184 Google Scholar

  • [19] Nammur G.G., Naaman A.E., A bond stress model for fiber reinforced concrete based on bond stress slip relationship, ACI Mater. J., 86(1), 1989, 45–57 Google Scholar

  • [20] Naaman A.E., Namur G.G., Alwan J.M., Najm H.S., Fiber pullout and bond slip I: analytical study, ASCE J. Struct Eng., 117(9), 1991, 2769–2790 http://dx.doi.org/10.1061/(ASCE)0733-9445(1991)117:9(2769)CrossrefGoogle Scholar

  • [21] Naaman A.E., Namur G.G., Alwan J.M., Najm H.S., Fiber pullout and bond slip II: experimental validation. ASCE J. Struct. Eng., 117(9), 1991, 2791–2800 http://dx.doi.org/10.1061/(ASCE)0733-9445(1991)117:9(2791)CrossrefGoogle Scholar

  • [22] Dubey A., Fiber reinforced concrete: characterization of flexural toughness & some studies on fibermatrix bond-slip interaction. PhD Thesis, University of British Columbia, 1999 Google Scholar

  • [23] STUVO-rapport 102. Constructieve toepassingen van staalvezelbeton, Eindrapport van STUVO-cel 149, 1996, 77 Google Scholar

  • [24] Soroushian P., Mirza F., Alhozaimy A., Bonding of Confined Steel Fiber Reinforced Concrete to Deformed Bars, ACI Materials Journal 91(2), 1994, 141–149 Google Scholar

  • [25] Noghabai K., Behavior of Tie Elements of Plain and Fi-brous Concrete and Varying Cross Section, ACI Structural Journal 97(2), 2000, 277–284 Google Scholar

  • [26] Bigaj-van Vliet A.J., Bond of deformed reinforcing steel bars embedded in steel fiber reinforced concrete — State-of-the-art report, Delft Cluster, 2001, 65 Google Scholar

  • [27] Grünewald S., Performance-based design of selfcompacting fibre reinforced concrete. PhD Thesis, Delft University of technology, 2004 Google Scholar

  • [28] Holschemacher K., Klug Y., Pull-out behaviour of steel fibres in self-compacting concrete. First International Symposium on Design, Performance and Use of Self-Consolidating Concrete, China, 2005, 523–532 Google Scholar

  • [29] Cunha V., Pull-out behaviour of hooked-end steel fibres in self-compacting concrete, Report 07-DEC/E06, University of Minho, 2007 Google Scholar

  • [30] Schumacher P., Rotation Capacity of Self-Compacting Steel Fiber Reinforced Concrete, PhD Thesis, Delft Univer-sity of technology, 2008 Google Scholar

  • [31] Aslani F., Nejadi S., Evaluation and Comparison of Experimental Results to Determine the Bond Characteristics of Steel Fiber Reinforced Self-Compacting Concrete. Structural Engineering World Congress (SEWC), Como, Italy, 4th–6th April, 2011 Google Scholar

  • [32] Cox H.L., The elasticity and strength of paper and other fibrous materials, British J. Appl. Phys., 3(1), 1952, 72–79 http://dx.doi.org/10.1088/0508-3443/3/3/302CrossrefGoogle Scholar

  • [33] Greszczuk L.B., Theoretical Studies of the Mechanics of the Fibre-Matrix Interface in Composites, Interfaces in Composites, ASTM STP 452, American Society for Testing and Materials, PhiladelphiA, 1969, 42–58 Google Scholar

  • [34] Lawrence P., Some Theoretical Considerations of Fibre Pullout from an Elastic Matrix, J. Mater. Sci., 7(1), 1972, 1–6 http://dx.doi.org/10.1007/BF00549541CrossrefGoogle Scholar

  • [35] Gopalaratnam V.S., Shah S.P., Tensile Fracture of Steel Fibre Reinforced Concrete, ASCE J Eng Mec Div, 113(5), 1987, 635–652 http://dx.doi.org/10.1061/(ASCE)0733-9399(1987)113:5(635)CrossrefGoogle Scholar

  • [36] Nammur G.Ir., Naaman A.E., Clark S.K., Analytical Prediction of the Pull-out Behavior of Steel Fibres in Cementitious Matrices. Cement Based Composites: Bonding in Cemenitious Composites, In: Symposia Proceedings, V.114, Materials Research Societ, Pittsburg, 1988, 217–224 Google Scholar

  • [37] Gopalaratnam V.S., Cheng J., On the Modelling of Inelastic Interfaces in Fibrous Composites. Cement Based Composites: Bonding in Cementitious Composites, In: Symposia Proceedings, V.114, Materials Research Society, Pittsburgh, 1988, 225–231 Google Scholar

  • [38] Stang H., Li Z., Shah S.P., The Pullout Problem-the Stress Versus Fracture Mechanical Approach, ASCE J. Eng. Mech., 116(10) 1990, 2136–2150 http://dx.doi.org/10.1061/(ASCE)0733-9399(1990)116:10(2136)CrossrefGoogle Scholar

  • [39] Takaku A., Arridge R.G.C., The Effect of Interfacial Radial and Shear Stress on Fibre Pullout in Composite Materials, J. Phys., 6, 1973, 2038–2047 Google Scholar

  • [40] Hsueh C.H., Elastic Load Trnasfer from Partially Embedded Axially Loaded Fibre to Matrix, J. Mater. Sci. Let., 7(5), 1988, 497–500 http://dx.doi.org/10.1007/BF01730704CrossrefGoogle Scholar

  • [41] Hsueh C.H., Interfacial Debonding and Fibre Pullout Stresses of Fibre-Reinforced Composites, Mater. Sci. Eng., A123, 1990, 1–11 Google Scholar

  • [42] Hsueh, C.H. Interfacial Debonding and Fiber Pullout Stresses of Fiber Reinforced Composites II: Nonconstant Interfacial Bond Strength, Mater. Sci. Eng., A 125, 1990, 67–73. Google Scholar

  • [43] Alwan J.M., Naaman A.E., Guerrero P., Effect of mechanical clamping on the pullout response of hooked steel fibers embedded in cementitious matrices, Concrete Sci. Eng., 1(1), 1999, 15–25 Google Scholar

  • [44] Chanvillard G., Modeling the pullout of wire-drawn steel fibers, Cement Concrete. Res., 29(7), 1999, 1027–1037 http://dx.doi.org/10.1016/S0008-8846(99)00081-2CrossrefGoogle Scholar

  • [45] Morton J., Groves G.W., The effect of metal wires on the fracture of a brittle matrix composites, J. Mater. Sci., 11(4), 1976, 617–622 http://dx.doi.org/10.1007/BF01209446CrossrefGoogle Scholar

  • [46] Kanda T., Li V.C., Interface property and apparent strength of a high strength hydrophilic fiber in cement matrix, ASCE J. Mater. Civ. Eng., 10(1), 1998, 5–13 http://dx.doi.org/10.1061/(ASCE)0899-1561(1998)10:1(5)CrossrefGoogle Scholar

  • [47] Aslani F., Nejadi S., A Comparison of the Bond Characteristics in Conventional and Self-Compacting Concrete, Part I: Experimental Results, The 9th Symposium on High Performance Concrete, Rotorua, New Zealand, Vol. 2, 2011, 435–442 Google Scholar

  • [48] Aslani F., Nejadi S., A Comparison of the Bond Characteristics in Conventional and Self-Compacting Concrete, Part II: Code Provisions and Empirical Equations. The 9th Symposium on High Performance Concrete, Rotorua, New Zealand, Vol. 2, 2011, 443–450 Google Scholar

  • [49] Orangun C.O., Jirsa J.O., Breen J.E., A revaluation of test data on development length and splices, ACI Journal Proceeding 74(3), 1977, 114–122 Google Scholar

  • [50] Kemp E.L., Wilhelm W.J., Investigation of the parameters influencing bond cracking, ACI Journal Proceeding 76(1), 1979, 47–71 Google Scholar

  • [51] Kemp E.L., Bond in reinforced concrete: behavior and design criteria, ACI Journal Proceeding 83(1), 1983, 50–57 Google Scholar

  • [52] Chapman R.A., Shah S.P., Early-age bond strength in reinforced concrete, ACI Materials Journal 84(6), 1987, 501–510. Google Scholar

  • [53] Harajli M.H., Development/splice strength of reinforcing bars embedded in plain and fiber reinforced concrete, ACI Structural Journal 91(5), 1994, 511–520 Google Scholar

  • [54] Pillai S.U., Kirk D.W., Erki M.A. Reinforced concrete design, McGraw-Hill Ryserson, Whitby, ON, Canada, 1999 Google Scholar

  • [55] Bae S., Mix design, formwork pressure and bond charac-teristics of special self-consolidating concrete, MSc Thesis, Ryerson University, 2006 Google Scholar

  • [56] CEB. 1982, Bulletin D’Information No 151-Bond action and bond behaviour of reinforcement (State-of-the-art report), CEB, Paris, France: p. 153 Google Scholar

  • [57] Barbosa M.T.G., Evaluation of the behavior of the bond in ordinary and high strength concrete. Doctoral Thesis, COPPE/UFRJ, 2001 (in Portuguese) Google Scholar

  • [58] Aslani F., Nejadi, S., Bond Behavior of Reinforce-ment in Conventional and Self-Compacting Concrete. Advances in Structural Engineering. In Press. Google Scholar

  • [59] CEB-FIP, Structural Concrete—Bulletin No. 1. Paris, France, 1999 Google Scholar

  • [60] Huang Z., Engström B., Magnusson J., Experimental in-vestigation of the bond and anchorage behaviour of de-formed bars in high strength concrete. Report 94:4, Chalmers University of Technology, 1996 Google Scholar

  • [61] Harajli M.H., Hout M., Jalkh W., Local bond stressslip behaviour of reinforcing bars em1bedded in plain and fibre concrete, ACI Mater Journal 92(4), 1995, 343–353 Google Scholar

  • [62] Harajli M.H., Local bond-slip behavior of reinforcing bars embedded in fiber reinforced concrete, In: Proceedings of international conference: Bond in concrete —From research to practice, Riga, 1992,7.87–7.97 Google Scholar

  • [63] Hartwich K., Zum Riss- und Verformungsverhalten von stahlfaserverstärkten Stahlbetonstäben unter Längszug, Dissertation, TU Braunschweig, Institut für Baustoffe, Massivbau und Brandschutz, Heft 72, Germany, 1986 Google Scholar

  • [64] Samen Ezeldin A., Balaguru P.N., Bond performance of reinforcing bars embedded in fiber reinforced concrete and subjected to monotonic and cyclic loads, In: Proceedings of ASCE on Serviceability and Durability of Construction Materials, 1990, 145–154 Google Scholar

  • [65] Hota S., Naaman A.E., Bond stress-slip response of reinforcing bars embedded in FRC matrices under mono-tonic and cyclic loading, ACI Structural Journal 94(5), 1997, 525–537 Google Scholar

  • [66] Plizzari G.A., Bond and splitting crack development in normal and high strength fiber reinforced concrete, In: Proceedings of 13th Eng. Mechanics Division Conference — EMD 9, Baltimore, 1999 Google Scholar

  • [67] De Bonte F., Hechtsterkte bij staalvezelbeton, MSc Theis, Katholieke Universiteit Leuven, Belgium, 2000, 140 Google Scholar

  • [68] Dupont D., Vandewalle L., De Bonte F., Influence of steel fibres on local bond behaviour, in: Bond in concrete — from research to standards, Balázs, G. et al. (ed.), 2002, 783–790 Google Scholar

  • [69] Plizzari G.A., Lundgren K., Balázs G.L., Bond and Splitting in Fibre Reinforced Concrete under Repeated Loading, in: Bond in Concrete — from research to standards, Balázs, G. et al. (ed.), 2002, 221–229 Google Scholar

  • [70] Weiße D., Verbundverhalten der Bewehrung in Stahlfaserbeton. 2. Leipziger Fachtagung “Innovationen im Bauwesen”, Faserbeton, Bauwerk Verlag GmbH, Berlin, Germany, 2002, 77–88 Google Scholar

  • [71] Pfyl Th., Tragverhalten von Stahlfaserbeton, Dissertation ETH Nr. 15005, Zürich, Switzerland, 2003 Google Scholar

  • [72] ACI 318. 2008. Building code requirements for structural con-crete and commentary, American Concrete Institute Google Scholar

About the article

Published Online: 2012-07-01

Published in Print: 2012-09-01

Citation Information: Open Engineering, Volume 2, Issue 3, Pages 445–470, ISSN (Online) 2391-5439, DOI: https://doi.org/10.2478/s13531-012-0015-3.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Ya Fang Zhang, Pei Ran Chen, Hao Liu, and Qing Hua Wu
Advanced Materials Research, 2014, Volume 919-921, Page 2061
Farhad Aslani and Mehrnaz Natoori
Structural Engineering and Mechanics, 2013, Volume 46, Number 2, Page 295

Comments (0)

Please log in or register to comment.
Log in