Jump to ContentJump to Main Navigation
Show Summary Details

Open Engineering

formerly Central European Journal of Engineering

Editor-in-Chief: Noor, Ahmed

1 Issue per year

Open Access
See all formats and pricing

Delamination of impacted composite structures by cohesive zone interface elements and tiebreak contact

Fatih Dogan
  • Material Research Centre, SEC Faculty, Kingston University, London, SW15 3DW, UK
  • Email:
/ Homayoun Hadavinia
  • Material Research Centre, SEC Faculty, Kingston University, London, SW15 3DW, UK
  • Email:
/ Todor Donchev
  • Material Research Centre, SEC Faculty, Kingston University, London, SW15 3DW, UK
  • Email:
/ Prasannakumar Bhonge
  • Department of Mechanical Engineering, Wichita State University, Wichita, KS, 67260, USA
  • Email:
Published Online: 2012-09-27 | DOI: https://doi.org/10.2478/s13531-012-0018-0


Maximising impact protection of fibre reinforced plastic (FRP) laminated composite structures and predicting and preventing the negative effects of impact on these structures are paramount design criteria for ground and space vehicles. In this paper the low velocity impact response of these structures will be investigated. The current work is based on the application of explicit finite element software for modelling the behaviour of laminated composite plates under low velocity impact loading and it explores the impact, post impact and failure of these structures. Three models, namely thick shell elements with cohesive interface, solid elements with cohesive interface, and thin shell elements with tiebreak contact, were all developed in the explicit nonlinear finite element code LS-DYNA. The FEA results in terms of force and energy are validated with experimental studies in the literature. The numerical results are utilized in providing guidelines for modelling and impact simulation of FRP laminated composites, and recommendations are provided in terms of modelling and simulation parameters such as element size, number of shell sub-laminates, and contact stiffness scale factors.

Keywords: Impact; Laminated composite; Cohesive zone; Tiebreak contact; LS-DYNA

  • [1] Hadavinia H., Dogan F, Elmarakbi A., Khalili M., Modelling of low velocity impact of laminated composite substructures. International Journal of Vehicle Structures and Systems, 2011, 3(2), 96–106 http://dx.doi.org/10.4273/ijvss.3.2.04 [Crossref]

  • [2] Lau S.T.W., Said M.R., Yaako M.Y., On the effect of geometrical designs and failure modes in composite axial crushing: A literature review, Composite Structures, 2012, 94, 803–812 http://dx.doi.org/10.1016/j.compstruct.2011.09.013 [Crossref]

  • [3] England J., Hadavinia H., Marchant D.R., Aboutorabi A., Design of Automotive Metal and Composite Chassis Structures, Recent Patents on Mechanical Engineering, Bentham Science, 2010, 3(3), pp. 211–225

  • [4] Dehkordi M.T., Nosraty H., Shokrieh M.M., Minak G., Ghelli D., Low velocity impact properties of intra-ply hybrid composites based on basalt and nylon woven fabrics, Materials & Design. 2010; 31(8), 3835–3844. http://dx.doi.org/10.1016/j.matdes.2010.03.033 [Crossref]

  • [5] Heimbs S., Heller S., Middendorf P., Hähnel F., Weiße J., Low velocity impact on CFRP plates with compressive preload: Test and modelling., International Journal of Impact Engineering, 2009, 36(10–11), 1182–1193 http://dx.doi.org/10.1016/j.ijimpeng.2009.04.006 [Crossref]

  • [6] Chang F.-K., Chang K.-Y., A progressive damage model for laminated composites containing stress concentrations. J. Compos. Mater. 1987, 21, 834–855 http://dx.doi.org/10.1177/002199838702100904 [Crossref]

  • [7] Choi H.Y., Wu H.-Y.T.. Chang F.K., A new approach toward understanding damage mechanisms and mechanics of laminated composites due to low-velocity impact: Part II-Analysis, J. Compos. Mater. 1991, 25, 1012–1038

  • [8] Choi H.-Y., Wang H.S., Chang F.-K., Effect of laminate configuration and impactor’s mass on the initial impact damage of graphite/epoxy composite plates due to line loading impact, J. Compos. Mater. 1992, 26(6), 804–827 http://dx.doi.org/10.1177/002199839202600603 [Crossref]

  • [9] LS-DYNA Theory Manual, Livermore Software Technology Corporation, California, USA, LS-DYNA 971 R6; 2006

  • [10] Hellen T.K., On the method of the virtual crack extension, Int. J. Numer. Meth. Eng., 1975, 9:187–207 http://dx.doi.org/10.1002/nme.1620090114 [Crossref]

  • [11] Rice J.R., A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech., 1968, 35:379–386 http://dx.doi.org/10.1115/1.3601206 [Crossref]

  • [12] Rybicki E.F., Kanninen M.F., A finite element calculation of stress intensity factors by a modified crack closure integral, Eng. Fract. Mech., 1977, 9:931–938 http://dx.doi.org/10.1016/0013-7944(77)90013-3 [Crossref]

  • [13] Raju I.S., Calculation of strain-energy release rates with higher order and singular finite elements, Eng. Fract. Mech., 1987, 28(3), 251–274 http://dx.doi.org/10.1016/0013-7944(87)90220-7 [Crossref]

  • [14] Parks D.M., A stiffness derivative finite element technique for determination of crack tip stress intensity factors, Int. J. Fract., 1974, 10(4), 487–502 http://dx.doi.org/10.1007/BF00155252 [Crossref]

  • [15] Griffith A.A., The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society, London; Series A, 1921, 221, 163–198 http://dx.doi.org/10.1098/rsta.1921.0006 [Crossref]

  • [16] Gordnian K., Hadavinia H., Mason P.J., Madenci E., Determination of fracture energy and cohesive strength in Mode I delamination of angle-ply laminated composites, Compos. Struct., Vol. 82(4), 577–586, 2008 http://dx.doi.org/10.1016/j.compstruct.2007.02.008 [Crossref]

  • [17] Hillerborg A., Modeer M., Peterson P.E., Analysis of crack formation and growth in concrete by means of fracture mechanics and finite elements, Cement Concr. Res., 1976, 6, 773–782 http://dx.doi.org/10.1016/0008-8846(76)90007-7 [Crossref]

  • [18] Needleman A., A continuum model for void nucleation by inclusion debonding, J. Appl. Mech., 1987, 54, 525–531 http://dx.doi.org/10.1115/1.3173064 [Crossref]

  • [19] Tvergaard V., Hutchinson J.W., The relation between crack growth resistance and fracture process parameters in elastic-plastic solids, J. Mech. Phys. Solid, 1992, 40, 1377–1397 http://dx.doi.org/10.1016/0022-5096(92)90020-3 [Crossref]

  • [20] Tvergaard V., Hutchinson J.W., The influence of plasticity on mixed mode interface toughness, J. Mech. Phys. Solid, 1993, 41, 1119–1135 http://dx.doi.org/10.1016/0022-5096(93)90057-M [Crossref]

  • [21] Hutchinson J.W., Linking scale in fracture mechanics. In: Proceedings of the 9th International Conference on Fracture (ICF9), Sydney, 1–5 April 1997, 1–14

  • [22] Camacho G.T., Ortiz M., Computational modeling of impact damage in brittle materials, Int. J. Solid. Struct., 1996, 33, 2899–2938 http://dx.doi.org/10.1016/0020-7683(95)00255-3 [Crossref]

  • [23] Mi Y., Crisfield M.A., Davies G.A.O., Hellweg H.B., Progressive delamination using interface elements, J. Compos. Mater., 1998, 32(14), 1246–1272 http://dx.doi.org/10.1177/002199839803201401 [Crossref]

  • [24] Hillerborg A., Application of fictitious crack model to different types of materials, Int. J. Fract., 1991, 51, 95–102

  • [25] Dugdale D.S., Yielding of steel sheets containing slits, J. Appl. Mech., 1960, 8, 100–104

  • [26] Williams J.G., Hadavinia H., Analytical solution of cohesive zone models, J. Mech. Phys. Solid., 2002, 809–825 [Crossref]

  • [27] Chen J., Crisfield M., Kinloch A.J., Busso E.P., et al., Predicting progressive delamination of composite materials specimens via interface elements, Mech. Compos. Mater. Struct., 1999, 6, 1–17

  • [28] Blackman B.R.K., Hadavinia H., Kinloch A.J., Williams J.G., The use of cohesive zone model to study the fracture of fibre composites and adhesively-bonded joints, Int. J. Fract., 2003, 119(1), 25–46 http://dx.doi.org/10.1023/A:1023998013255 [Crossref]

  • [29] Elmarakbi A.M., Hu N., Fukunaga H., Finite element simulation of delamination growth in composite materials using LS-DYNA, Compos. Sci. Tech., 2009, 69(14), 2383–2391 http://dx.doi.org/10.1016/j.compscitech.2009.01.036 [Crossref]

  • [30] Barenblatt G.I., The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses: axially-symmetric cracks, J. Appl. Math. Mech. (PMM), 23, 434–444, 1959

  • [31] Rice J.R., Wang J-S., Embrittlement of interfaces by solute segregation, Mat. Sci. Eng. A, 1989, 107, 23–40 http://dx.doi.org/10.1016/0921-5093(89)90372-9 [Crossref]

  • [32] Xu X.P., Needleman A., Numerical simulation of fast crack growth in brittle solids, J. Mech. Phys. Solid., 1994, 42, 1397–1434 http://dx.doi.org/10.1016/0022-5096(94)90003-5 [Crossref]

  • [33] Geubelle P.H., Baylor J., Impact-induced delamination of laminated composites: a 2D simulation, Compos. B Eng., 1998, 29, 589–602 http://dx.doi.org/10.1016/S1359-8368(98)00013-4 [Crossref]

  • [34] Pandya K., Williams J.G., Measurement of cohesive zone parameters in tough polyethylene, Polymer Engineering and Science, 2000, 40(8), 1765–1776 http://dx.doi.org/10.1002/pen.11308 [Crossref]

  • [35] Mohammed I., Leichti K.M., Cohesive zone modelling of crack nucleation at bimaterial corners, J. Mech. Phys. Solid., 2000, 48, 735–764 http://dx.doi.org/10.1016/S0022-5096(99)00052-6 [Crossref]

  • [36] Hughes T.J.R., Taylor R.L., Sackman J.L., Curnier A.C., et al., A Finite Element Method for a Class of Contact-Impact Problems, 1976

  • [37] Belytschko T., Yeh I. S., The splitting pinball method for contact-impact problems, Comput. Meth. Appl. Mech. Eng., 1993, 105(3), 375–393 http://dx.doi.org/10.1016/0045-7825(93)90064-5 [Crossref]

  • [38] Burton D.E., Physics and Numerics of the TENSOR Code, Lawrence Livermore National Laboratory, Internal Document, UCID-19428, 1982

  • [39] Wilkins M. L., Calculations of Elastic-Plastic Flow, 1964

About the article

Published Online: 2012-09-27

Published in Print: 2012-12-01

Citation Information: Open Engineering, ISSN (Online) 2391-5439, DOI: https://doi.org/10.2478/s13531-012-0018-0. Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Masoud Kharazan, M.H. Sadr, and Morteza Kiani
Steel and Composite Structures, 2014, Volume 17, Number 4, Page 387

Comments (0)

Please log in or register to comment.
Log in