Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Engineering

formerly Central European Journal of Engineering

Editor-in-Chief: Noor, Ahmed

1 Issue per year


CiteScore 2016: 0.70

SCImago Journal Rank (SJR) 2016: 0.199
Source Normalized Impact per Paper (SNIP) 2016: 0.552

Open Access
Online
ISSN
2391-5439
See all formats and pricing
More options …

Delamination of impacted composite structures by cohesive zone interface elements and tiebreak contact

Fatih Dogan / Homayoun Hadavinia / Todor Donchev / Prasannakumar Bhonge
Published Online: 2012-09-27 | DOI: https://doi.org/10.2478/s13531-012-0018-0

Abstract

Maximising impact protection of fibre reinforced plastic (FRP) laminated composite structures and predicting and preventing the negative effects of impact on these structures are paramount design criteria for ground and space vehicles. In this paper the low velocity impact response of these structures will be investigated. The current work is based on the application of explicit finite element software for modelling the behaviour of laminated composite plates under low velocity impact loading and it explores the impact, post impact and failure of these structures. Three models, namely thick shell elements with cohesive interface, solid elements with cohesive interface, and thin shell elements with tiebreak contact, were all developed in the explicit nonlinear finite element code LS-DYNA. The FEA results in terms of force and energy are validated with experimental studies in the literature. The numerical results are utilized in providing guidelines for modelling and impact simulation of FRP laminated composites, and recommendations are provided in terms of modelling and simulation parameters such as element size, number of shell sub-laminates, and contact stiffness scale factors.

Keywords: Impact; Laminated composite; Cohesive zone; Tiebreak contact; LS-DYNA

  • [1] Hadavinia H., Dogan F, Elmarakbi A., Khalili M., Modelling of low velocity impact of laminated composite substructures. International Journal of Vehicle Structures and Systems, 2011, 3(2), 96–106 http://dx.doi.org/10.4273/ijvss.3.2.04CrossrefGoogle Scholar

  • [2] Lau S.T.W., Said M.R., Yaako M.Y., On the effect of geometrical designs and failure modes in composite axial crushing: A literature review, Composite Structures, 2012, 94, 803–812 http://dx.doi.org/10.1016/j.compstruct.2011.09.013CrossrefGoogle Scholar

  • [3] England J., Hadavinia H., Marchant D.R., Aboutorabi A., Design of Automotive Metal and Composite Chassis Structures, Recent Patents on Mechanical Engineering, Bentham Science, 2010, 3(3), pp. 211–225 Google Scholar

  • [4] Dehkordi M.T., Nosraty H., Shokrieh M.M., Minak G., Ghelli D., Low velocity impact properties of intra-ply hybrid composites based on basalt and nylon woven fabrics, Materials & Design. 2010; 31(8), 3835–3844. http://dx.doi.org/10.1016/j.matdes.2010.03.033CrossrefGoogle Scholar

  • [5] Heimbs S., Heller S., Middendorf P., Hähnel F., Weiße J., Low velocity impact on CFRP plates with compressive preload: Test and modelling., International Journal of Impact Engineering, 2009, 36(10–11), 1182–1193 http://dx.doi.org/10.1016/j.ijimpeng.2009.04.006CrossrefGoogle Scholar

  • [6] Chang F.-K., Chang K.-Y., A progressive damage model for laminated composites containing stress concentrations. J. Compos. Mater. 1987, 21, 834–855 http://dx.doi.org/10.1177/002199838702100904CrossrefGoogle Scholar

  • [7] Choi H.Y., Wu H.-Y.T.. Chang F.K., A new approach toward understanding damage mechanisms and mechanics of laminated composites due to low-velocity impact: Part II-Analysis, J. Compos. Mater. 1991, 25, 1012–1038 Google Scholar

  • [8] Choi H.-Y., Wang H.S., Chang F.-K., Effect of laminate configuration and impactor’s mass on the initial impact damage of graphite/epoxy composite plates due to line loading impact, J. Compos. Mater. 1992, 26(6), 804–827 http://dx.doi.org/10.1177/002199839202600603CrossrefGoogle Scholar

  • [9] LS-DYNA Theory Manual, Livermore Software Technology Corporation, California, USA, LS-DYNA 971 R6; 2006 Google Scholar

  • [10] Hellen T.K., On the method of the virtual crack extension, Int. J. Numer. Meth. Eng., 1975, 9:187–207 http://dx.doi.org/10.1002/nme.1620090114CrossrefGoogle Scholar

  • [11] Rice J.R., A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech., 1968, 35:379–386 http://dx.doi.org/10.1115/1.3601206CrossrefGoogle Scholar

  • [12] Rybicki E.F., Kanninen M.F., A finite element calculation of stress intensity factors by a modified crack closure integral, Eng. Fract. Mech., 1977, 9:931–938 http://dx.doi.org/10.1016/0013-7944(77)90013-3CrossrefGoogle Scholar

  • [13] Raju I.S., Calculation of strain-energy release rates with higher order and singular finite elements, Eng. Fract. Mech., 1987, 28(3), 251–274 http://dx.doi.org/10.1016/0013-7944(87)90220-7CrossrefGoogle Scholar

  • [14] Parks D.M., A stiffness derivative finite element technique for determination of crack tip stress intensity factors, Int. J. Fract., 1974, 10(4), 487–502 http://dx.doi.org/10.1007/BF00155252CrossrefGoogle Scholar

  • [15] Griffith A.A., The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society, London; Series A, 1921, 221, 163–198 http://dx.doi.org/10.1098/rsta.1921.0006CrossrefGoogle Scholar

  • [16] Gordnian K., Hadavinia H., Mason P.J., Madenci E., Determination of fracture energy and cohesive strength in Mode I delamination of angle-ply laminated composites, Compos. Struct., Vol. 82(4), 577–586, 2008 http://dx.doi.org/10.1016/j.compstruct.2007.02.008CrossrefGoogle Scholar

  • [17] Hillerborg A., Modeer M., Peterson P.E., Analysis of crack formation and growth in concrete by means of fracture mechanics and finite elements, Cement Concr. Res., 1976, 6, 773–782 http://dx.doi.org/10.1016/0008-8846(76)90007-7CrossrefGoogle Scholar

  • [18] Needleman A., A continuum model for void nucleation by inclusion debonding, J. Appl. Mech., 1987, 54, 525–531 http://dx.doi.org/10.1115/1.3173064CrossrefGoogle Scholar

  • [19] Tvergaard V., Hutchinson J.W., The relation between crack growth resistance and fracture process parameters in elastic-plastic solids, J. Mech. Phys. Solid, 1992, 40, 1377–1397 http://dx.doi.org/10.1016/0022-5096(92)90020-3CrossrefGoogle Scholar

  • [20] Tvergaard V., Hutchinson J.W., The influence of plasticity on mixed mode interface toughness, J. Mech. Phys. Solid, 1993, 41, 1119–1135 http://dx.doi.org/10.1016/0022-5096(93)90057-MCrossrefGoogle Scholar

  • [21] Hutchinson J.W., Linking scale in fracture mechanics. In: Proceedings of the 9th International Conference on Fracture (ICF9), Sydney, 1–5 April 1997, 1–14 Google Scholar

  • [22] Camacho G.T., Ortiz M., Computational modeling of impact damage in brittle materials, Int. J. Solid. Struct., 1996, 33, 2899–2938 http://dx.doi.org/10.1016/0020-7683(95)00255-3CrossrefGoogle Scholar

  • [23] Mi Y., Crisfield M.A., Davies G.A.O., Hellweg H.B., Progressive delamination using interface elements, J. Compos. Mater., 1998, 32(14), 1246–1272 http://dx.doi.org/10.1177/002199839803201401CrossrefGoogle Scholar

  • [24] Hillerborg A., Application of fictitious crack model to different types of materials, Int. J. Fract., 1991, 51, 95–102 Google Scholar

  • [25] Dugdale D.S., Yielding of steel sheets containing slits, J. Appl. Mech., 1960, 8, 100–104 Google Scholar

  • [26] Williams J.G., Hadavinia H., Analytical solution of cohesive zone models, J. Mech. Phys. Solid., 2002, 809–825 CrossrefGoogle Scholar

  • [27] Chen J., Crisfield M., Kinloch A.J., Busso E.P., et al., Predicting progressive delamination of composite materials specimens via interface elements, Mech. Compos. Mater. Struct., 1999, 6, 1–17 Google Scholar

  • [28] Blackman B.R.K., Hadavinia H., Kinloch A.J., Williams J.G., The use of cohesive zone model to study the fracture of fibre composites and adhesively-bonded joints, Int. J. Fract., 2003, 119(1), 25–46 http://dx.doi.org/10.1023/A:1023998013255CrossrefGoogle Scholar

  • [29] Elmarakbi A.M., Hu N., Fukunaga H., Finite element simulation of delamination growth in composite materials using LS-DYNA, Compos. Sci. Tech., 2009, 69(14), 2383–2391 http://dx.doi.org/10.1016/j.compscitech.2009.01.036CrossrefGoogle Scholar

  • [30] Barenblatt G.I., The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses: axially-symmetric cracks, J. Appl. Math. Mech. (PMM), 23, 434–444, 1959 Google Scholar

  • [31] Rice J.R., Wang J-S., Embrittlement of interfaces by solute segregation, Mat. Sci. Eng. A, 1989, 107, 23–40 http://dx.doi.org/10.1016/0921-5093(89)90372-9CrossrefGoogle Scholar

  • [32] Xu X.P., Needleman A., Numerical simulation of fast crack growth in brittle solids, J. Mech. Phys. Solid., 1994, 42, 1397–1434 http://dx.doi.org/10.1016/0022-5096(94)90003-5CrossrefGoogle Scholar

  • [33] Geubelle P.H., Baylor J., Impact-induced delamination of laminated composites: a 2D simulation, Compos. B Eng., 1998, 29, 589–602 http://dx.doi.org/10.1016/S1359-8368(98)00013-4CrossrefGoogle Scholar

  • [34] Pandya K., Williams J.G., Measurement of cohesive zone parameters in tough polyethylene, Polymer Engineering and Science, 2000, 40(8), 1765–1776 http://dx.doi.org/10.1002/pen.11308CrossrefGoogle Scholar

  • [35] Mohammed I., Leichti K.M., Cohesive zone modelling of crack nucleation at bimaterial corners, J. Mech. Phys. Solid., 2000, 48, 735–764 http://dx.doi.org/10.1016/S0022-5096(99)00052-6CrossrefGoogle Scholar

  • [36] Hughes T.J.R., Taylor R.L., Sackman J.L., Curnier A.C., et al., A Finite Element Method for a Class of Contact-Impact Problems, 1976 Google Scholar

  • [37] Belytschko T., Yeh I. S., The splitting pinball method for contact-impact problems, Comput. Meth. Appl. Mech. Eng., 1993, 105(3), 375–393 http://dx.doi.org/10.1016/0045-7825(93)90064-5CrossrefGoogle Scholar

  • [38] Burton D.E., Physics and Numerics of the TENSOR Code, Lawrence Livermore National Laboratory, Internal Document, UCID-19428, 1982 Google Scholar

  • [39] Wilkins M. L., Calculations of Elastic-Plastic Flow, 1964 Google Scholar

About the article

Published Online: 2012-09-27

Published in Print: 2012-12-01


Citation Information: Open Engineering, ISSN (Online) 2391-5439, DOI: https://doi.org/10.2478/s13531-012-0018-0.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Masoud Kharazan, M.H. Sadr, and Morteza Kiani
Steel and Composite Structures, 2014, Volume 17, Number 4, Page 387

Comments (0)

Please log in or register to comment.
Log in