Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Engineering

formerly Central European Journal of Engineering

Editor-in-Chief: Ritter, William

CiteScore 2018: 0.91

SCImago Journal Rank (SJR) 2018: 0.211
Source Normalized Impact per Paper (SNIP) 2018: 0.655

ICV 2018: 121.06

Open Access
See all formats and pricing
More options …

Water drops kinematic analysis: the classic-quantum and single-multiparticle viewpoints

Daniele Wrachien / Giulio Lorenzini
Published Online: 2012-12-29 | DOI: https://doi.org/10.2478/s13531-012-0027-z


One of the most challenging modelling problems in science is that of a particle crossing a gaseous mean. In sprinkler irrigation this applies to a water droplet travelling from the nozzle to the ground. The challenge mainly refers to the intense difficulty in writing and solving the system of governing equations for such complicate process, where many non-linearities occur when describing the relations and dependences among one influential parameter and another. The problem becomes even more complicate when not just a single droplet alone is assessed but a multi-droplet system is accounted for as, in addition to the inter-parameter dependencies, it is also observed an inter-droplet reciprocal affection, mainly due to electrical interactions between the hydrogen and the oxygen atoms of the different water molecules. An alternative to traditional classic approaches to analyse water droplet dynamics in sprinkler irrigation have been recently proposed in the form of a quantum approach, but the whole classic-quantum and single-droplet versus multi-droplet alternatives need to be discussed and pinpointed and these are among the main aims of the present paper which focuses on the theoretical part of the issue, thus highlighting the new perspectives of a deeper comprehension in the spray flow related phenomena.

Keywords: Spray particles kinematics; Single- and multi-droplet systems; Classic and quantum mechanics; Sprinkler water droplets; Mathematical modelling

  • [1] Molle B., Tomas S., Hendawi M., Granier J., Evaporation and wind drift losses during sprinkler irrigation influenced by droplet size distribution, Irr. and Drain., 2012, 61, 240–250 http://dx.doi.org/10.1002/ird.648Web of ScienceCrossrefGoogle Scholar

  • [2] Edling R.J., Kinetic energy, evaporation and wind drift of droplets from low pressure irrigation nozzles, Trans. ASAE, 1985, 28, 1543–1550 Google Scholar

  • [3] Keller J., Bliesner R.D., Sprinkler and Trickle irrigation, Van Nostrand Reinhold, New York, 1990 http://dx.doi.org/10.1007/978-1-4757-1425-8CrossrefGoogle Scholar

  • [4] Kincaid D.C., Longley T.S., A water droplet evaporation and temperature model, Trans. ASAE, 1989, 32, 457–463 Google Scholar

  • [5] Kinzer G.D., Gunn R., The evaporation, temperature and thermal relaxation-time of freely falling waterdrops, J. Meteor, 1951, 8, 71–83 http://dx.doi.org/10.1175/1520-0469(1951)008<0071:TETATR>2.0.CO;2CrossrefGoogle Scholar

  • [6] Thompson A.L., Gilley J.R., Norman J.M., A sprinkler water droplet evaporation and plant canopy model: II. Model applications, 1993, Trans. ASAE, 36, 743–750 Google Scholar

  • [7] De Wrachien D., Lorenzini G., Modelling jet flow and losses in sprinkler irrigation: overview and perspective of a new approach. Biosystems Engineering, 2006, 94, 297–309 http://dx.doi.org/10.1016/j.biosystemseng.2006.02.019CrossrefGoogle Scholar

  • [8] Lorenzini G., Simplified modelling of sprinkler droplet dynamics, Biosystems Engineering, 2004, 87, 1–11 http://dx.doi.org/10.1016/j.biosystemseng.2003.08.015CrossrefGoogle Scholar

  • [9] Lorenzini G., Water droplet dynamics and evaporation in an irrigation spray, Trans. ASABE, 2006, 49, 545–549 Google Scholar

  • [10] Dirac P.A., Quantized singularities in the electromagnetic field, PRS, 1931, A133, 1–60 Google Scholar

  • [11] De Wrachien D., Lorenzini G., Mambretti S., Water droplet trajectories in an irrigation spray: the classic and Quantum Mechanical pictures. 40th International Symposium on Agricultural Engineering, (February 21–24, 2012 Opatija Croatia), 2012, 85–96 Google Scholar

  • [12] Nottale L., The theory of scale relativity, 1992, IJMP, 7, 4899–493 Google Scholar

  • [13] Goldstein S., Tumulka R., Zanghi N., Bohmian trajectories as the foundation of quantum mechanics, Quantum Trajectories, 2011, 1–15 Google Scholar

  • [14] Teske M.E., Hermansky C.G., Riley C.M., Evaporation rates of agricultural spray material at low relative wind speeds, Atomization and Spray, 1998, 8, 471–478 Google Scholar

  • [15] Teske M.E., Thistle H.W., Eav B., New ways to predict aerial spray deposition and drift, J. Forest., 1998, 96, 25–31 Google Scholar

  • [16] Teske M.E., Ice G.G., A one-dimensional model for aerial spray assessment in forest streams, J. Forest., 2002, 100, 40–45 Google Scholar

  • [17] Hewitt A.J., Johnson D.A., Fish J.D., Hermansky C.G., Valcore D.L., Development of spray drift task force database for aerial applications. Env. Tox. Chem., 2002, 21, 648–658 http://dx.doi.org/10.1002/etc.5620210326CrossrefGoogle Scholar

  • [18] Bird S.L., Perry S.G., Ray S.L., Teske M.E., Evaluation of the AGDISP aerial spray algorithms in the AgDRIFT model, Env. Tox. Chem., 2002, 21, 672–681 http://dx.doi.org/10.1002/etc.5620210328CrossrefGoogle Scholar

  • [19] Bird R.B., Steward W.E., Lighfoot E.N., Transport Phenomena, Wiley and Sons, New York, 1960 Google Scholar

  • [20] Lopreore C.L., Wyatt R.E., Quantum wave packet dynamics with trajectories, PRL, 1999, 82, 5190–5193 http://dx.doi.org/10.1103/PhysRevLett.82.5190CrossrefGoogle Scholar

  • [21] Wyatt R.E., Quantum Dynamics with Trajectories: Introduction to Quantum Dynamics, Springer, 2005, 1–405 Google Scholar

  • [22] Ghosh S.K., Quantum fluid dynamics within the framework of density functional theory, Quantum Trajectories, 2011, 183–195 Google Scholar

  • [23] Hermann R.P., Numerical simulation of a quantum particle in a box, J. Phys. A: Math. Gen., 1997, 30, 3967–3975 http://dx.doi.org/10.1088/0305-4470/30/11/023CrossrefGoogle Scholar

  • [24] Al-Rashid S.N.T., Habeeb M.A., Amed K.A., Application of the scale relativity (ScR) theory to the problem of a particle in a finite one-dimensional square well (FODSW) potential, JQIS, 2011, 1, 7–17 http://dx.doi.org/10.4236/jqis.2011.11002CrossrefGoogle Scholar

  • [25] Madelung E., Eine anschauliche Deutung der Gleichung von Schroedinger, Naturwissenschaften, 1926, 14, 1004–1004 http://dx.doi.org/10.1007/BF01504657CrossrefGoogle Scholar

  • [26] Bohm D., A suggested interpretation of the quantum theory in terms of hidden variables — I, Phys. Rev., 1952, 85, 166–179 http://dx.doi.org/10.1103/PhysRev.85.166CrossrefGoogle Scholar

  • [27] Bohm D., A suggested interpretation of the quantum theory in terms of hidden variables — II, Phys. Rev., 1952, 85, 180–193 http://dx.doi.org/10.1103/PhysRev.85.180CrossrefGoogle Scholar

  • [28] Kendrick B.K., Direct numerical solution of the quantum hydrodynamic equation of motion, Quantum Trajectories, 2011, 325–344 Google Scholar

About the article

Published Online: 2012-12-29

Published in Print: 2013-03-01

Citation Information: Open Engineering, Volume 3, Issue 1, Pages 121–125, ISSN (Online) 2391-5439, DOI: https://doi.org/10.2478/s13531-012-0027-z.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in