Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Engineering

formerly Central European Journal of Engineering

Editor-in-Chief: Ritter, William

1 Issue per year

CiteScore 2017: 0.70

SCImago Journal Rank (SJR) 2017: 0.211
Source Normalized Impact per Paper (SNIP) 2017: 0.787

Open Access
See all formats and pricing
More options …

Analysing global food waste problem: pinpointing the facts and estimating the energy content

Mehmet Melikoglu
  • Satake Centre for Grain Process Engineering, School of Chemical Engineering and Analytical Science, The University of Manchester, M60 1QD, Manchester, UK
  • Department of Energy Systems Engineering, Atilim University, Kizilcasar Mahallesi, Incek-Golbasi, Ankara, Turkey
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Carol Lin
  • Satake Centre for Grain Process Engineering, School of Chemical Engineering and Analytical Science, The University of Manchester, M60 1QD, Manchester, UK
  • School of Energy and Environment, City University of Hong Kong, Hong Kong, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Colin Webb
  • Satake Centre for Grain Process Engineering, School of Chemical Engineering and Analytical Science, The University of Manchester, M60 1QD, Manchester, UK
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-04-11 | DOI: https://doi.org/10.2478/s13531-012-0058-5


Food waste is a global problem. Each year food worth billions of dollars is wasted by the developed economies of the world. When food is wasted, the problem does not end at that point. More than 95% of the food waste ends at landfill sites, where converted into methane, carbon dioxide and other greenhouse gasses by anaerobic digestion. The impact of food waste to climate change is catastrophic. Food waste problem tends to increase in next 25 years due to economic and population growth mainly in Asian countries. In addition, when food wastes buried at landfill sites their energy content is lost. Although food waste is a huge problem, its global size and extent has recently become a hot topic in the academic community. This paper summarises the size of the global food waste problem together with the estimation of the amount of energy lost when food wastes dumped at landfill sites. Calculations in this study also revealed that energy lost at landfill sites equals to 43% of the delivered energy used for the preparation of foods in the US, 37% of the hydroelectric power generation of Japan, and more than 100% of the current annual renewable energy demand of UK industries.

Keywords: Energy content; Environment; Food waste; Greenhouse Gases; Hunger; Waste management

  • [1] Anonymous, Terms of Environment: Glossary, Abbreviations and Acronyms, United States Environmental Protection Agency (EPA), http://www.epa.gov/OCEPAterms/fterms.html, 2008 Google Scholar

  • [2] Anonymous, Hunger Stats, United Nations World Food Program, https://www.wfp.org/hunger/ stats, 2012 Google Scholar

  • [3] Beede D. N., Bloom D. E., THE ECONOMICS OF MUNICIPAL SOLID WASTE, The World Bank Research Observer 10, 1995, 113–150 http://dx.doi.org/10.1093/wbro/10.2.113CrossrefGoogle Scholar

  • [4] Heller M. C., Keoleian G. A., Assessing the sustainability of the US food system: a life cycle perspective, Agricultural Systems 76, 2003, 1007–1041 http://dx.doi.org/10.1016/S0308-521X(02)00027-6CrossrefGoogle Scholar

  • [5] Kantor L. S., Lipton K., Manchester A., Oliveira V., Estimating and Addressing America’s Food Losses, Food Review, 1997, 1–12 Google Scholar

  • [6] Jones T. W., Analyzing retail food loss, Biocycle 46, 2005, 40–42 Google Scholar

  • [7] Jones T. W., Using Contemporary Archaeology and Applied Anthropology to Understand Food Loss in the American Food System, In Community compost.com, 2006 Google Scholar

  • [8] Jones T. W., FOOD LOSS AND THE AMERICAN HOUSEHOLD, In BioCycle, 2006, p 28 Google Scholar

  • [9] Oliver R., Greenhouse Gas All About: Food waste, In CNN, http://www.cnn.com/2007/WORLD/asiapcf/09/24/food.leftovers/, 2007 Google Scholar

  • [10] Anonymous, The Food We Waste, Waste & Resources Action Programme (WRAP), ISBN: 1-84405-383-0, 2008 Google Scholar

  • [11] Anonymous, Household Food Waste, Waste & Resources Action Programme (WRAP), ISBN: 1-84405-430-6, 2009 Google Scholar

  • [12] Anonymous, Understanding Food Waste, Waste & Resources Action Programme (WRAP), 2007 Google Scholar

  • [13] Anonymous, New estimates for household food and drink waste in the UK, Food Waste, Waste & Resources Action Programme (WRAP), http://www.wrap.org.uk/content/new-estimates-household-food-and-drink-waste-uk, 2011 Google Scholar

  • [14] Anonymous, Food Industry Sustainability Strategy, Department for Environment Food and Rural Affairs, United Kingdom, http://www.defra.gov.uk/publications/files/pb11649-fiss2006-060411.pdf, 2006 Google Scholar

  • [15] Thankappan S., From Fridge Mountains to Food Mountains? Tackling the UK Food Waste Problem, Cardiff University, http://www.ccels.cf.ac.uk/archives/issues/2005/thankappanjune.pdf, 2005 Google Scholar

  • [16] Parry A., Food Waste Reduction: How Can Technology Help?, Waste & Resources Action Programme (WRAP), http://www.wrap.org.uk/sites/files/wrap/Andrew%20Parry.pdf, 2007 Google Scholar

  • [17] Kawashima T., The use of food waste as a protein source for animal feed — current status and technological development in Japan, In FAO Animal Production and Health Proceedings (FAO), Protein Sources for the Animal Feed Industry, Expert Consultation and Workshop, 1810-0732, no. 1, 2002, pp 303–311 Google Scholar

  • [18] Nagata K., In Food Self-Sufficiency, Japan Needs Imports to Keep Itself Fed., The Japan Times Online, http://search.japantimes.co.jp/cgi-bin/nn20080226i1.html, 2009 Google Scholar

  • [19] Zhang A. Y.-Z., Sun Z., Leung C. C. J., Han W., Lau K. Y., Li M., Lin C. S. K. Valorisation of bakery waste for succinic acid production, Green Chemistry, 2013, DOI: 10.1039/c2gc36518a CrossrefGoogle Scholar

  • [20] Mao I. F., Tsai C.-J., Shen S.-H., Lin T.-F., Chen W.-K., Chen M.-L., Critical components of odors in evaluating the performance of food waste composting plants, Science of The Total Environment 370, 2006, 323–329 http://dx.doi.org/10.1016/j.scitotenv.2006.06.016CrossrefGoogle Scholar

  • [21] Kim J.-D., Park J.-S., In B.-H., Kim D., Namkoong W., Evaluation of pilot-scale in-vessel composting for food waste treatment, Journal of Hazardous Materials 154, 2008, 272–277 http://dx.doi.org/10.1016/j.jhazmat.2007.10.023CrossrefWeb of ScienceGoogle Scholar

  • [22] Khoo H. H., Lim T. Z., Tan R. B. H., Food waste conversion options in Singapore: Environmental impacts based on an LCA perspective, Science of The Total Environment 408, 2010, 1367–1373. http://dx.doi.org/10.1016/j.scitotenv.2009.10.072Web of ScienceCrossrefGoogle Scholar

  • [23] Kirkpatrick S., Tarasuk V., The relationship between low income and household food expenditure patterns in Canada, Public Health Nutrition 6, 2003, 589–597 http://dx.doi.org/10.1079/PHN2003517CrossrefGoogle Scholar

  • [24] Wenlock R. W., Buss D. H., Derry B. J., Dixon E. J., Household food wastage in Britain, British Journal of Nutrition 43, 1980, 53–70 http://dx.doi.org/10.1079/BJN19800064CrossrefGoogle Scholar

  • [25] Tjell J. C., Editorial: Is the ‘waste hierarchy’ sustainable?, Waste Management & Research 23, 2005, 173–174 http://dx.doi.org/10.1177/0734242X0502300301CrossrefGoogle Scholar

  • [26] Bai R., Sutanto M., The practice and challenges of solid waste management in Singapore, Waste Management 22, 2002, 557–567 http://dx.doi.org/10.1016/S0956-053X(02)00014-4CrossrefGoogle Scholar

  • [27] Sakai S., Sawell S. E., Chandler A. J., Eighmy T. T., Kosson D. S., Vehlow J., van der Sloot H. A., Hartlén J., Hjelmar O., World trends in municipal solid waste management, Waste Management 16, 1996, 341–350 http://dx.doi.org/10.1016/S0956-053X(96)00106-7CrossrefGoogle Scholar

  • [28] Anonymous, Disposing of Animal by-products: Catering waste — Questions and answers. Department for Environment, Food and Rural Affairs (DEFRA), Animal health and welfare, http://archive.defra.gov.uk/foodfarm/byproducts/wastefood/caterwaste.htm, 2008 Google Scholar

  • [29] Schaub S. M., Leonard J. J., Composting: An alternative waste management option for food processing industries, Trends in Food Science & Technology 7, 1996, 263–268 http://dx.doi.org/10.1016/0924-2244(96)10029-7CrossrefGoogle Scholar

  • [30] Rynk R., Composting Methods, On-farm Composting Handbook, 1992, pp 24–42 Google Scholar

  • [31] Chang J. I., Tsai J. J., Wu K. H., Thermophilic composting of food waste, Bioresource Technology 97, 2006, 116–122 http://dx.doi.org/10.1016/j.biortech.2005.02.013CrossrefGoogle Scholar

  • [32] Adhikari B. K., Barrington S., Martinez J., King S. Characterization of food waste and bulking agents for composting, Waste Management 28, 2008, 795–804 http://dx.doi.org/10.1016/j.wasman.2007.08.018CrossrefWeb of ScienceGoogle Scholar

  • [33] Adhikari B. K., Barrington S., Martinez J. Predicted growth of world urban food waste and methane production, Waste Management & Research 24, 2006, 421–433 http://dx.doi.org/10.1177/0734242X06067767CrossrefGoogle Scholar

  • [34] Einola J.-K. M., Karhu A. E., Rintala J. A., Mechanically-biologically treated municipal solid waste as a support medium for microbial methane oxidation to mitigate landfill greenhouse emissions, Waste Management 28, 2008, 97–111 http://dx.doi.org/10.1016/j.wasman.2007.01.002CrossrefWeb of ScienceGoogle Scholar

  • [35] Adhikari B. K., Barrington S. F., Martinez J., Urban Food Waste generation: challenges and opportunities, International Journal of Environment and Waste Management 3, 2009, 4–21 http://dx.doi.org/10.1504/IJEWM.2009.024696CrossrefGoogle Scholar

  • [36] Ozkaya B., Chlorophenols in leachates originating from different landfills and aerobic composting plants, Journal of Hazardous Materials 124, 2005, 107–112 http://dx.doi.org/10.1016/j.jhazmat.2005.04.016CrossrefGoogle Scholar

  • [37] Anonymous, Food Waste is Environmental Sleeping Giant Says WRAP, In Waste & Resources Action Programme (WRAP), accessed in 2008 from http://www.wrap.org.uk/wrap_corporate/news/food_waste_is.htm, 2007 Google Scholar

  • [38] Anonymous, Electricity from Municipal Solid Waste, In Municipal Solid Waste, U.S. Environmental Protection Agency (EPA), http: //www.epa.gov/cleanenergy/energy-and-you/affect/municipal-sw.html, 2008 Google Scholar

  • [39] Lin C. S. K., Pfaltzgraff L. A., Herrero-Davila L., Mubofu E. B., Solhy A., Clark P. J., Koutinas A., Kopsahelis N., Stamatelatou K., Dickson F., Thankappan S., Zahouily M., Brocklesby R., Luque R., Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective, Energy & Environmental Science 6, 2013, 426–464 http://dx.doi.org/10.1039/c2ee23440hWeb of ScienceCrossrefGoogle Scholar

  • [40] Faaij A., van Doorn J., Curvers T., Waldheim L., Olsson E., van Wijk A., Daey-Ouwens C., Characteristics and availability of biomass waste and residues in The Netherlands for gasification, Biomass and Bioenergy 12, 1997, 225–240 http://dx.doi.org/10.1016/S0961-9534(97)00003-2CrossrefGoogle Scholar

  • [41] Meraz L., Domínguez A., Kornhauser I., Rojas F., A thermochemical concept-based equation to estimate waste combustion enthalpy from elemental composition, Fuel 82, 2003, 1499–1507 http://dx.doi.org/10.1016/S0016-2361(03)00075-9CrossrefGoogle Scholar

  • [42] Unruh B., Delivered Energy Consumption Projections by Industry, in the Annual Energy Outlook 2002, http://www.eia.doe.gov/oiaf/analysispaper/industry/consumption.html, 2002 Google Scholar

  • [43] Boys J. T., Covic G. A., Green A. W., Stability and control of inductively coupled power transfer systems, IEE Proceedings: Electric Power Applications 147, 2000, 37–42 http://dx.doi.org/10.1049/ip-epa:20000017CrossrefGoogle Scholar

About the article

Published Online: 2013-04-11

Published in Print: 2013-06-01

Citation Information: Open Engineering, Volume 3, Issue 2, Pages 157–164, ISSN (Online) 2391-5439, DOI: https://doi.org/10.2478/s13531-012-0058-5.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Katharina Biely, Dries Maes, and Steven Van Passel
Sustainability, 2018, Volume 10, Number 8, Page 2843
Chao Huang, Cheng Zhao, Hai-Jun Guo, Can Wang, Mu-Tan Luo, Lian Xiong, Hai-Long Li, Xue-Fang Chen, and Xin-De Chen
Journal of Agricultural and Food Chemistry, 2017
Yuanyuan Ren, Miao Yu, Chuanfu Wu, Qunhui Wang, Ming Gao, Qiqi Huang, and Yu Liu
Bioresource Technology, 2017
Kunwar Paritosh, Sandeep K. Kushwaha, Monika Yadav, Nidhi Pareek, Aakash Chawade, and Vivekanand Vivekanand
BioMed Research International, 2017, Volume 2017, Page 1
Leonidas Matsakas, Qiuju Gao, Stina Jansson, Ulrika Rova, and Paul Christakopoulos
Electronic Journal of Biotechnology, 2017, Volume 26, Page 69
Huan Liu, Jingyuan Ma, Meng Wang, Weinan Wang, Li Deng, Kaili Nie, Xuemin Yue, Fang Wang, and Tianwei Tan
Applied Biochemistry and Biotechnology, 2016, Volume 180, Number 8, Page 1524
Leonidas Matsakas and Paul Christakopoulos
Sustainability, 2015, Volume 7, Number 2, Page 1446
Wei Han, Wan Chi Lam, Mehmet Melikoglu, Man Tung Wong, Hoi Ting Leung, Chi Leung Ng, Ping Yan, Suet Yu Yeung, and Carol Sze Ki Lin
ACS Sustainable Chemistry & Engineering, 2015, Volume 3, Number 9, Page 2043
Esra Uçkun Kiran, Antoine P. Trzcinski, Wun Jern Ng, and Yu Liu
Waste and Biomass Valorization, 2014, Volume 5, Number 6, Page 903

Comments (0)

Please log in or register to comment.
Log in