Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Engineering

formerly Central European Journal of Engineering

Editor-in-Chief: Ritter, William

CiteScore 2018: 0.91

SCImago Journal Rank (SJR) 2018: 0.211
Source Normalized Impact per Paper (SNIP) 2018: 0.655

ICV 2017: 100.00

Open Access
See all formats and pricing
More options …

Engineering properties of cement mortar with pond ash in South Korea as construction materials: from waste to concrete

Sang Jung / Seung-Jun Kwon
Published Online: 2013-07-28 | DOI: https://doi.org/10.2478/s13531-012-0068-3


Among the wastes from coal combustion product, only fly ash is widely used for mineral mixture in concrete for its various advantages. However the other wastes including bottom ash, so called PA (pond ash) are limitedly reused for reclamation. In this paper, the engineering properties of domestic pond ash which has been used for reclamation are experimentally studied. For this, two reclamation sites (DH and TA) in South Korea are selected, and two domestic PAs are obtained. Cement mortar with two different w/c (water to cement) ratios and 3 different replacement ratios (0%, 30%, and 60%) of sand are prepared for the tests. For workability and physical properties of PA cement mortar, several tests like flow, setting time, and compressive strength are evaluated. Several durability tests including porosity measuring, freezing and thawing, chloride migration, and accelerated carbonation are also performed. Through the tests, PA (especially from DH area) in surface saturated condition is evaluated to have internal curing action which leads to reasonable strength development and durability performances. The results show a potential applicability of PA to concrete aggregate, which can reduce consuming natural resources and lead to active reutilization of coal product waste.

Keywords: Pond ash; Coal combustion; Cement mortar; Durability; Workability

  • [1] Lee H. K., Kim H. K., Hwang E. A., Utilization of power plant bottom ash as aggregates in fiberreinforced cellular concrete. Waste Manage 2010, 30, 274–284 http://dx.doi.org/10.1016/j.wasman.2009.09.043CrossrefWeb of ScienceGoogle Scholar

  • [2] KCL — Korea Conformity Laboratories, Standardization Technology for The Environmental-Friendly Utilization of Pond Ash, Technical Report, R-2007-2-151, 2010 [in Korean]. Google Scholar

  • [3] Sakai K., Environmental design for concrete structures. J. Adv Concr Technol 2003, 3, 17–28 http://dx.doi.org/10.3151/jact.3.17CrossrefGoogle Scholar

  • [4] ISO/DIS 13315-1, Environmental Management of Concrete Structures (Draft). International Standard, 2010 Google Scholar

  • [5] Lin K. L., Chang W. C., Lin D. F., Pozzolanic characteristics of pulverized incinerator bottom ash slag. Constr Build Mater 2008, 22, 324–329 http://dx.doi.org/10.1016/j.conbuildmat.2006.08.012Web of ScienceCrossrefGoogle Scholar

  • [6] Song H. -W., Kwon S. -J., Byun K. J., Park C. K., A study on analytical technique of chloride diffusion considering characteristics of mixture design for high performance concrete using mineral admixture. J. Korea Soc Civil Eng, 2005, 25, 213–223 [in Korean] Google Scholar

  • [7] Sahmaran M., Lachemi M., Hossain K. M. A., Li V. C., Internal curing of engineered cementitious composites for prevention of early age autogenous shrinkage cracking. Cem Concr Res 2009, 39, 893–901 http://dx.doi.org/10.1016/j.cemconres.2009.07.006Web of ScienceCrossrefGoogle Scholar

  • [8] JSCE-Japan Society of Civil Engineering, 2002. Proposal of the format for durability database of concrete. Concr Lib 2002,109 Google Scholar

  • [9] Kim S. C., Ahn S. K., Mix design and characteristics of compressive strengths for Bottom foam concrete associated with the application of bottom ash. J. Korea Concr Inst 2009, 21, 283–290 [in Korean] http://dx.doi.org/10.4334/JKCI.2009.21.3.283CrossrefGoogle Scholar

  • [10] KCI-Korea Concrete Institute, Concrete and Environment, KCI-R 10-004, 1st edition, 2010 [in Korean] Google Scholar

  • [11] Thomas M. D. A., Bamforth P. B., Modeling chloride diffusion in concrete: effect of fly ash and slag. Cem Concr Res 1999, 29, 487–495 http://dx.doi.org/10.1016/S0008-8846(98)00192-6CrossrefGoogle Scholar

  • [12] Bentz D. P., Snyder K. A., Protected paste volume in concrete extension to internal curing using saturated lightweight fine aggregate. Cem Concr Res 1999, 29, 1863–1867 http://dx.doi.org/10.1016/S0008-8846(99)00178-7CrossrefGoogle Scholar

  • [13] Song H. -W., Cho H. -J., Park S. -S., Byun K. J. et al. Early-age cracking resistance evaluation of concrete structure. Concr Sci Eng 2001, 3, 62âăŞ72 Google Scholar

  • [14] Müller U., Rübner K., The microstructure of concrete made with municipal waste incinerator bottom ash as an aggregate component. Cem Concr Res 2006, 36, 1434–1443 http://dx.doi.org/10.1016/j.cemconres.2006.03.023CrossrefGoogle Scholar

  • [15] Rajamane N. P., Peter J. A., Ambily P. S., Prediction of compressive strength of concrete with fly ash as sand replacement material. Cem Concr Compos 2007,29,218–223 http://dx.doi.org/10.1016/j.cemconcomp.2006.10.001CrossrefGoogle Scholar

  • [16] Won J. P., Lee Y. S., Lee J. J., Durability characteristics and environmental assessment of controlled low-strength materials using bottom ash. J. Korean Conc Inst 2002, 14, 223–230 [in Korean] http://dx.doi.org/10.4334/JKCI.2002.14.2.223CrossrefGoogle Scholar

  • [17] Kim M. H., Choi S. J., A study on concrete with high volume of fly ash considering replacement method and ratio. J of Koran Arch Inst 2002,18,123–130 [in Korean] Google Scholar

  • [18] Ramme A. W., Taraniyil M. P., Coal Combustion Products Utilization Handbook, 2nd edition, WE Energies Publication, 2004 Google Scholar

  • [19] Du L., Folliard K. J., Mechanisms of air entrainment in concrete. Cem Concr Res 2005, 35, 1463–1471 http://dx.doi.org/10.1016/j.cemconres.2004.07.026CrossrefGoogle Scholar

  • [20] Bentur A., Igarashi S. I., Kovler K., Prevention of autogenous shrinkage in high-strength concrete by internal curing using wet lightweight aggregate. Cem Concr Res 2001, 31, 1587–1591 http://dx.doi.org/10.1016/S0008-8846(01)00608-1CrossrefGoogle Scholar

  • [21] Crouch L.K., Hewitt R., Byard B., High Volume Fly Ash Concrete. Conference, World Coal Ash (WOCA), May 7–10, Northern Kentucky, USA, 1–14, 2007 Google Scholar

  • [22] Izaguirre A., Lanas J., Álvarez J. I., Effect of waterrepellent admixtures on the behaviour of aerial limebased mortars. Cem Concr Res 2009, 39, 1095–1104 http://dx.doi.org/10.1016/j.cemconres.2009.07.026CrossrefGoogle Scholar

  • [23] Neville A. M., Properties of Concrete — Chapter 13, 4th edition, Longman, 1996 Google Scholar

  • [24] Kwon S. -J., Song H. -W., Analysis of carbonation behavior in concrete using neural network algorithm and carbonation modeling. Cem Concr Res 2010, 40, 119–127 http://dx.doi.org/10.1016/j.cemconres.2009.08.022CrossrefGoogle Scholar

  • [25] Song H. -W., Kwon S. -J., Evaluation of chloride penetration in high performance concrete using neural network algorithm and micro pore structure. Cem Concr Res 2009, 39, 814–824 http://dx.doi.org/10.1016/j.cemconres.2009.05.013CrossrefGoogle Scholar

  • [26] Kwon S. -J., Na U. J., Park S. -S., Jung S. H., Service life prediction of concrete wharves with early-aged crack: Probabilistic approach for chloride diffusion. Struct. Safe. 2009, 31, 75–83 http://dx.doi.org/10.1016/j.strusafe.2008.03.004CrossrefGoogle Scholar

  • [27] Broomfield J. P., Corrosion of Steel in Concrete: Understanding, Investigation and Repair. London: E&FN, 1997 http://dx.doi.org/10.4324/9780203414606CrossrefGoogle Scholar

  • [28] Otsuki N., Nagatataki S., Nakashita K., Evaluation of AgNO3 solution spray method for measurement of chloride penetration into hardened cementitious matrix materials. ACI Mater. J. 1992, 89, 587–592 Google Scholar

  • [29] Song H. -W., Kwon S.- J., Byun K. J., Park C. K., Predicting carbonation in early-aged concrete. Cem Conc Res 2006, 36, 979–989 http://dx.doi.org/10.1016/j.cemconres.2005.12.019CrossrefGoogle Scholar

  • [30] Maekawa K., Ishida T., Kishi T., Multi-scale modeling of concrete performance-Integrated material and structural mechanics. Adv Concr Technol 2003, 1, 91–119 http://dx.doi.org/10.3151/jact.1.91CrossrefGoogle Scholar

  • [31] Power T. C., Basic considerations pertaining to freezing and thawing tests of concrete. Proc. ASTM, 55, 1955, 1132–1154. Google Scholar

  • [32] KIS-Korea Industrial Standards, Testing Method for Compressive Strength of Hydraulic Cement Mortars, 2007 Google Scholar

  • [33] KIS-Korea Industrial Standards, Testing Method for Time of Setting of Concrete Mixtures by Penetration Resistance, 2007 Google Scholar

  • [34] Kumar R., Bhattacharjee B., Study on some factors affecting the results in the use of MIP method in concrete research. Cem Concr Res 2003, 33, 417–424. http://dx.doi.org/10.1016/S0008-8846(02)00974-2CrossrefGoogle Scholar

  • [35] KIS-Korea Industrial Standards, Testing Method for Resistance of Concrete to Rapid Freezing and Thawing, 2008 Google Scholar

  • [36] NORDTEST, Chloride Migration Coefficient from Non-Steady-State Migration Experiments, NT BUILD 492, 1999 Google Scholar

  • [37] KIS-Korea Industrial Standards, Standard Test Method for Accelerated Carbonation of Concrete, 2010 Google Scholar

  • [38] Andrade L. B., Rocha J. C., Cheriaf M., Aspects of moisture kinetics of coal bottom ash in concrete. Cem Concr Res 2007, 37, 231–241 http://dx.doi.org/10.1016/j.cemconres.2006.11.001CrossrefWeb of ScienceGoogle Scholar

  • [39] Bentz D. P., Internal curing of high performance blended cement mortars. ACI Mater J. 2007, 104, 408–414 Google Scholar

  • [40] Nisnevich M., Sirotin G., Dvoskin L., Ecshel Y., Effect of moisture cement of highly porous bottom ash on properties of concrete mixture and hardened concrete. Mag Concr Res 2001, 53, 283–288 http://dx.doi.org/10.1680/macr.2001.53.4.283CrossrefGoogle Scholar

  • [41] JSCE-Japan Society of Civil Engineering, Concrete committee, Standard Specification for Concrete Structures, 2002 Google Scholar

  • [42] Izumi I., Kita D., Maeda H., Carbonation, Kibodang Publication, 1986 Google Scholar

  • [43] Papadakis V. G., Vayenas C. G., Fardis M. N., Fundamental modeling and experimental investigation of concrete carbonation. ACI Mater J. 1991, 88, 363–373 Google Scholar

  • [44] Lee B. C., Jung S. H., Chae S. T., Kwon S. — J., Analysis on Characteristics of Domestic Pond Ash and Applicability to Concrete Structure (1)-Evaluating Properties of Domestic Pond Ash and Durability Performance in Pond Ash Concrete, J. of Korean Concr Inst, 2011, 23, 541–550 [in Korean]. http://dx.doi.org/10.4334/JKCI.2011.23.5.541CrossrefGoogle Scholar

About the article

Published Online: 2013-07-28

Published in Print: 2013-09-01

Citation Information: Open Engineering, Volume 3, Issue 3, Pages 522–533, ISSN (Online) 2391-5439, DOI: https://doi.org/10.2478/s13531-012-0068-3.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Sung-Won Yoo, Young Keun Cho, Sang-Hwa Jung, Kwang-Myung Lee, and Seung-Jun Kwon
Journal of Material Cycles and Waste Management, 2017, Volume 19, Number 2, Page 694
Yajun Wang
Advances in Materials Science and Engineering, 2016, Volume 2016, Page 1
Han-Seung Lee and Seung-Jun Kwon
Advances in Materials Science and Engineering, 2016, Volume 2016, Page 1
Sung-Won Yoo and Seung-Jun Kwon
Journal of the Korean Recycled Construction Resources Institute, 2014, Volume 2, Number 3, Page 202
G. Ganesh Prabhu, Jung Hwan Hyun, and Yun Yong Kim
Construction and Building Materials, 2014, Volume 70, Page 514

Comments (0)

Please log in or register to comment.
Log in