Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Engineering

formerly Central European Journal of Engineering

Editor-in-Chief: Ritter, William

CiteScore 2018: 0.91

SCImago Journal Rank (SJR) 2018: 0.211
Source Normalized Impact per Paper (SNIP) 2018: 0.655

ICV 2017: 100.00

Open Access
See all formats and pricing
More options …

A review of thrust-vectoring in support of a V/STOL non-moving mechanical propulsion system

José Páscoa
  • CAST-Center for Aerospace Science and Technology Dep. Electromechanical Engineering, University of Beira Interior, Cal. Fonte do Lameiro, 6201-001, Covilhã, Portugal
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Antonio Dumas
  • Dipartimento di Scienze e Metodi dell’Ingegneria, Università degli Studi di Modena e Reggio Emilia, Via Amendola 2, Pad. Morselli, 52122, Reggio-Emilia, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michele Trancossi
  • Dipartimento di Scienze e Metodi dell’Ingegneria, Università degli Studi di Modena e Reggio Emilia, Via Amendola 2, Pad. Morselli, 52122, Reggio-Emilia, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Paul Stewart / Dean Vucinic
Published Online: 2013-07-28 | DOI: https://doi.org/10.2478/s13531-013-0114-9


The advantages associated to Vertical Short-Take-Off and Landing (V/STOL) have been demonstrated since the early days of aviation, with the initial technolology being based on airships and later on helicopters and planes. Its operational advantages are enormous, being it in the field of military, humanitarian and rescue operations, or even in general aviation. Helicopters have limits in their maximum horizontal speed and classic V/STOL airplanes have problems associated with their large weight, due to the implementation of moving elements, when based on tilting rotors or turbojet vector mechanical oriented nozzles. A new alternative is proposed within the European Union Project ACHEON (Aerial Coanda High Efficiency Orienting-jet Nozzle). The project introduces a novel scheme to orient the jet that is free of moving elements. This is based on a Coanda effect nozzle supported in two fluid streams, also incorporating boundary layer plasma actuators to achieve larger deflection angles. Herein we introduce a state-of-the-art review of the concepts that have been proposed in the framework of jet orienting propulsion systems. This review allows to demonstrate the advantages of the new concept in comparison to competing technologies in use at present day, or of competing technologies under development worldwide.

Keywords: Coanda; V/STOL; Plasma actuator; orienting nozzle; propulsion

  • [1] Trancossi M., Dumas A., Giuliani I., Bagi I., Ugello capace di deviare in modo dinamico e controllabile un getto sintetico senza parti meccaniche in movimento e suo sistema di controllo, Patent No. RE2011A000049, Italy, 2011. Google Scholar

  • [2] Vucinic D., Hazarika B., Dinescu C., Visualization and PIV measurements of in-cylinder axisymmetric ows, in SAE Technical Papers, Automotive and Transportation Technology Congress and Exhibition, 2001. Google Scholar

  • [3] Vucinic D., Hazarika B., Integrated approach to computational and experimental ow visualization of a double annular conned jet, Journal of Visualization, vol. 4, no. 3, pp. 245–256, 2001. http://dx.doi.org/10.1007/BF03182585CrossrefGoogle Scholar

  • [4] Pascoa J., Xisto C., Goettlich E., Performance assessment limits in transonic 3D turbine stage blade rows using a mixing-plane approach, Journal of Mechanical Science and Technology, vol. 24, no. 10, pp. 2035–2042, 2010. http://dx.doi.org/10.1007/s12206-010-0713-9CrossrefGoogle Scholar

  • [5] Pascoa J., Mendes A., Gato L., A fast iterative inverse method for turbomachinery blade design, Mechanics Research Communications, vol. 36, no. 5, pp. 630–637, 2009. http://dx.doi.org/10.1016/j.mechrescom.2009.01.008CrossrefGoogle Scholar

  • [6] Pascoa J., Mendes A., Gato L., Redesigning annular turbine blade rows using a viscous-inviscid inverse design method, in Proc. 53rd ASME Turbo Expo 2008, vol. 6 of A, pp. 2209–2217, 2008. Google Scholar

  • [7] Pascoa J., Mendes A., Gato L., Turbine blade duty re-design by controlling lean and sweep using an innovative iterative inverse design method, in Proc. 51st ASME Turbo Expo, vol. 6, pp. 1249–1256, 2006. Google Scholar

  • [8] Pascoa J, Mendes A., Gato L., Aerodynamic design of turbomachinery cascades using an enhanced time-marching nite volume method,” CMES-Computer Modeling in Engineering and Sciences, vol. 6, pp. 537–546, 2004. Google Scholar

  • [9] Smith T., Bingham C., Stewart P., Allarton R. et al., Energy harvesting and power network architectures for the multibody advanced airship for transport high altitude cruiser-feeder airship concept, Journal of Aerospace Engineering, Part G of Proceedings of the Institution of Mechanical Engineers, vol. 227, pp. 586–598, 2013. http://dx.doi.org/10.1177/0954410012469319CrossrefGoogle Scholar

  • [10] Stewart P., Gladwin D., Parr M., Stewart J., Multiobjective evolutionary-fuzzy augmented flight control for an F16 aircraft,” Journal of Aerospace Engineering, Part G of Proceedings of the Institution of Mechanical Engineers, vol. 224, pp. 293–309, 2010. http://dx.doi.org/10.1243/09544100JAERO610CrossrefGoogle Scholar

  • [11] Anderson S. B., Historical overview of V/STOL aircraft technology, Tech. Rep. TM-81280, NASA, 1981. Google Scholar

  • [12] Ilieva G., Pascoa J., Dumas A., Trancossi M., A critical review of propulsion concepts for modern airships, Central European Journal of Engineering, vol. 2, no. 2, pp. 189–200, 2012. http://dx.doi.org/10.2478/s13531-011-0070-1CrossrefGoogle Scholar

  • [13] Flight, pp. 289, April 1932 Google Scholar

  • [14] Thomason T., Bell-Boeing JVX tilt rotor program — flight test program, in AIAA Paper N 83-2726, American Institute of Aeronautics and Astronautics, 1983. Google Scholar

  • [15] Aviation international news, pp. 42, February 2012. Google Scholar

  • [16] Flight international, pp. 1014, June 1962. Google Scholar

  • [17] Aviation Week — Last Raptor Rolls Off Lockheed Martin Line, December 2011. Google Scholar

  • [18] Dorr R., Rockwell/MBB X-31, World Air Power Journal, vol. 24, pp. 34–47, 1996. Google Scholar

  • [19] Saeed B., Exploring the Aerodynamic Characteristics of a Blown Annular-Wing for V/STOL Aircraft. PhD thesis, Brunel University, 2010. Google Scholar

  • [20] Saeed B., Gratton G., Mares C., A feasibility assessment of annular winged VTOL flight vehicles, The Aeronautical Journal, vol. 115, pp. 683–692, 2011. Google Scholar

  • [21] AGARD, V/STOL handling i-criteria and discussion, Tech. Rep. AGARD-R-577-70, Advisory Group for Aerospace Research & Development, 1970. Google Scholar

  • [22] Moralez E., Merrick V., Schroeder J., Simulation evaluation of an advanced control concept for a V/STOL aircraft, Journal of Guidance Control and Dynamics, vol. 12, pp. 334–341, 1989. http://dx.doi.org/10.2514/3.20413CrossrefGoogle Scholar

  • [23] Naldi R., Marconi L., Optimal transition maneuvers for a class of V/STOL aircraft, Automatica, vol. 47, pp. 870–879, 2011. http://dx.doi.org/10.1016/j.automatica.2011.01.027CrossrefGoogle Scholar

  • [24] Strykowski P., Krothapalli A., An experimental investigation of active control of thrust vectoring nozzle flow fields, tech. rep., The University of Minnesota, 1993. Google Scholar

  • [25] Mason M., Crowther W., Fluidic thrust vectoring of low observable aircraft, in CEAS Aerospace Aerodynamic Research Conference, pp. 1–7, 2002. Google Scholar

  • [26] Wing D., Static investigation of two fluidic thrustvectoring concepts on a two-dimensional convergentdivergent nozzle, Tech. Rep. TM-4574, NASA Langley Research Center, 1994. Google Scholar

  • [27] Porzio A., Characteristics of a Confined Jet Thrust Vector Control Nozzle. PhD thesis, Air Force Institute of Technology (USA), 1984. Google Scholar

  • [28] Trancossi M., Dumas A., A.C.H.E.O.N.: Aerial Coanda High Efficiency Orienting-jet Nozzle, in SAE Aerotech 2011, no. SAE Technical Paper 2011-01-2737, 2011. Google Scholar

  • [29] Trancossi M., An overview of scientific and technical literature on coanda effect applied to nozzles, in SAE Aerotech 2011, no. SAE Technical Paper 2011-01-2591, 2011. Google Scholar

  • [30] Trancossi M., Dumas A., Coanda synthetic jet deflection apparatus and control, in SAE Aerotech 2011, no. SAE Technical Paper 2011-01-2590, 2011. Google Scholar

  • [31] Sagha F., Banazadeh A., Coanda surface geometry optimization for multi-directional co-flow fluidic thrust vectoring, in Proceedings of ASME Turbo Expo 2009: Power for Land, Sea and Air, no. GT2009-59715, 2009. Google Scholar

  • [32] AGARD, Special course on V/STOL aerodynamics, Tech. Rep. AGARD-R-710, Advisory Group for Aerospace Research & Development, 1984. Google Scholar

  • [33] Mabey K., Smith B., Whichard G., McKechnie T., Coanda-assisted spray manipulation collar for a commercial plasma spray gun,” Journal of Thermal Spray Technology, vol. 20, no. 4, pp. 782–790, 2011. http://dx.doi.org/10.1007/s11666-011-9640-2CrossrefGoogle Scholar

  • [34] Kim H., Rajesh G., Setoguchi T., Matsuo S., Optimization study of a coanda ejector, Journal of Thermal Science, vol. 15, no. 4, pp. 331–336, 2006. http://dx.doi.org/10.1007/s11630-006-0331-2CrossrefGoogle Scholar

  • [35] Vanierschot M., Persoons T., Van den Bulck E., A new method for annular jet control based on cross-flow injection, Physics of Fluids, vol. 21, pp. 025103-1–025103-9, 2009. http://dx.doi.org/10.1063/1.3037343CrossrefGoogle Scholar

  • [36] Patankar U., Sridhar K., Three-dimensional curved wall jets, Journal of Basic Engineering, vol. 94, no. 2, pp. 339–344, 1972. http://dx.doi.org/10.1115/1.3425414CrossrefGoogle Scholar

  • [37] Bevilaqua P., Lee J., Development of a nozzle to improve the turning of supersonic Coanda jets, Tech. Rep. AFWAL-TR-80-3027, Air Force Wright Aeronautical Laboratories (Wright-Patterson Air Force Base), 1980. Google Scholar

  • [38] Favre-Marinet M., Binder G., Hac T., Generation of oscillating jets, Journal of Fluids Engineering, vol. 103, pp. 609–614, 1981. http://dx.doi.org/10.1115/1.3241780CrossrefGoogle Scholar

  • [39] Allen D., Axisymmetric Coanda-Assisted Vectoring. PhD thesis, Utah State University, 2008. Google Scholar

  • [40] Neuendorf R., Lourenco L., Wygnanski I., On large stream-wise structures in a wall jet owing over a circular cylinder, Physics of Fluids, vol. 16, pp. 2158–2169, 2004. http://dx.doi.org/10.1063/1.1703531CrossrefGoogle Scholar

  • [41] Chiang T., Sheu T., Wang S., Side wall effects on the structure of laminar flow over a plane-symmetric sudden expansion, Computers & Fluids, vol. 29, pp. 467–492, 2000. http://dx.doi.org/10.1016/S0045-7930(99)00018-3CrossrefGoogle Scholar

  • [42] Nishino T., Hahn S., Shari K, Large-eddy simulations of a turbulent coanda jet on a circulation control airfoil, Physics of Fluids, vol. 22, pp. 125105-1–125105-15, 2010. http://dx.doi.org/10.1063/1.3526757CrossrefGoogle Scholar

  • [43] Dumitrache A., Frunzulica F., Ionescu T., Nonlinearity, Bifurcation and Chaos — Theory and Applications, ch. Mathematical Modelling and Numerical Investigations on the Coanda Effect, pp. 101–132. INTECH, 2012. Google Scholar

  • [44] Payne P., Curved jet ows (vol i), Tech. Rep. USAAML Technical Report 65-20, US Army Aviation Material Laboratories, Fort Eustis, Virginia, USA, 1965. Google Scholar

  • [45] AGARD, Effects of streamline curvature on turbulent flow, Tech. Rep. AGARDograph N169, Advisory Group for Aerospace Research and Development, 1973. Google Scholar

  • [46] Kobayashi R., Fujisawa N., Curvature effects on twodimensional turbulent wall jets, Ingenieur-Archiv, vol. 53, pp. 409–417, 1983. http://dx.doi.org/10.1007/BF00533202CrossrefGoogle Scholar

  • [47] Englar R., Experimental investigation of the high velocity coanda wall jet applied to bluff trailing edge circulation control airfoils, tech. rep., Naval Ship Research and Development Center (USA), 1975. Google Scholar

  • [48] Bevilaqua P., Lifting surface theory for thrust augmenting ejectors,” tech. rep., Rockwell International Columbus OH (USA), 1982. Google Scholar

  • [49] Azim M., Sadrul-Islam M., Plane mixing layers from parallel of two streams, Experiments in Fluids, vol. 34, pp. 220–226, 2003. http://dx.doi.org/10.1007/s00348-002-0549-xCrossrefGoogle Scholar

  • [50] Matsuo S., Setoguchi T., Kudo T, Study on the characteristics of supersonic Coanda jet, Journal of Thermal Science, vol. 7, no. 3, pp. 165–175, 1998. http://dx.doi.org/10.1007/s11630-998-0012-2CrossrefGoogle Scholar

  • [51] Alvi F., Strykowski P., Krothapalli A., Forliti D., Vectoring thrust in multiaxes using confined shear layers, Journal of Fluids Engineering, vol. 122, no. 1, pp. 3–13, 2000. http://dx.doi.org/10.1115/1.483220CrossrefGoogle Scholar

  • [52] Cattafesta L., Sheplak M., Actuators for active flow control, Annual Review of Fluid Mechanics, vol. 43, p. 247272, 2011. http://dx.doi.org/10.1146/annurev-fluid-122109-160634CrossrefGoogle Scholar

  • [53] Panzarella P., The use of a Coanda nozzle with parallel secondary injection for the thrust vectoring of a two-dimensional compressible fluid, Master’s thesis, Air Force Institute of Technology (USA), 1965. Google Scholar

  • [54] Hanson R., Lavoie P., Naguib A., Morrison J., Transient growth instability cancellation by a plasma actuator array, Experiments in Fluids, vol. 49, pp. 1339–1348, 2010. http://dx.doi.org/10.1007/s00348-010-0877-1CrossrefGoogle Scholar

  • [55] Corke T., Post M., Orlov D., Sdbd plasma enhanced aerodynamics: concepts, optimization and applications, Progress in Aerospace Sciences, vol. 43, p. 192217, 2007. http://dx.doi.org/10.1016/j.paerosci.2007.06.001CrossrefGoogle Scholar

  • [56] Sosaa R., Artana G., Steady control of laminar separation over airfoils with plasma sheet actuators, Journal of Electrostatics, vol. 64, pp. 604–610, 2006. http://dx.doi.org/10.1016/j.elstat.2005.10.029CrossrefGoogle Scholar

  • [57] Orlov D. M., Modeling and simulation of single dielectric barrier discharge plasma actuators. PhD thesis, University of Notre Dame, 2006. Google Scholar

  • [58] Orlov D., Apker T., He, C. Othman H., et al., Modeling and experiment of leading edge separation control using sdbd plasma actuators, in AIAA 45th Aerospace Sciences Meeting, 2007. Google Scholar

  • [59] Lemire S., Vo H., Reduction of fan and compressor wake defect using plasma actuation for tonal noise reduction, Journal of Turbomachinery, vol. 133, pp. 133–143, 2011. http://dx.doi.org/10.1115/1.4000540CrossrefGoogle Scholar

  • [60] Grundmann S., Frey M., Tropea C., Unmanned aerial vehicle (UAV) with plasma actuators for separation control, in 47th AIAA Aerospace Sciences Meeting, 2009. Google Scholar

  • [61] Thomas F., Kozlov A., Corke T., Plasma actuators for cylinder flow control and noise reduction, AIAA Journal, vol. 46, pp. 1921–1931, 2008. http://dx.doi.org/10.2514/1.27821CrossrefGoogle Scholar

  • [62] Whalley R., Turbulent Boundary-Layer Control with DBD Plasma Actuators Using Spanwise Travelling-Wave Technique. PhD thesis, University of Nottingham, 2011. Google Scholar

  • [63] Tornabene F., Ceruti A., Mixed static and dynamic optimization of four-parameter functionally graded completely doubly curved and degenerate shells and panels using GDQ method, Mathematical Problems in Engineering, vol. 1, p. 33, 2013. Google Scholar

  • [64] Liverani A., Ceruti A., Caligiana G., Tablet-based 3D sketching and curve reverse modelling, Inter-national Journal of Computer Aided Engineering and Technology, vol. 5, no. 2/3, pp. 188–215, 2013. http://dx.doi.org/10.1504/IJCAET.2013.052936Google Scholar

About the article

Published Online: 2013-07-28

Published in Print: 2013-09-01

Citation Information: Open Engineering, Volume 3, Issue 3, Pages 374–388, ISSN (Online) 2391-5439, DOI: https://doi.org/10.2478/s13531-013-0114-9.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

MyungYeon Lee, MyungJun Song, DaBin Kim, and Yeol Lee
AIAA Journal, 2018, Page 1
Shyam S. Das, Jose C. Páscoa, M. Trancossi, and A. Dumas
Journal of Aerospace Engineering, 2016, Volume 29, Number 1, Page 04015015
Shyam Das, M. Abdollahzadeh, Jose Pascoa, A. Dumas, and M. Trancossi
The International Journal of Multiphysics, 2014, Volume 8, Number 2, Page 181
Antonio Dumas, Maharshi Subhash, Michele Trancossi, and Jose Pascoa Marques
Energy Procedia, 2014, Volume 45, Page 626

Comments (0)

Please log in or register to comment.
Log in