Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Engineering

formerly Central European Journal of Engineering

Editor-in-Chief: Ritter, William

1 Issue per year

CiteScore 2017: 0.70

SCImago Journal Rank (SJR) 2017: 0.211
Source Normalized Impact per Paper (SNIP) 2017: 0.787

ICV 2017: 100.00

Open Access
See all formats and pricing
More options …

Recent developments and perspectives on the treatment of industrial wastes by mineral carbonation — a review

Marius Bodor
  • Department of Environmental Engineering and Metallurgical Technological Systems, ”Dunarea de Jos” University of Galati, Galaţi, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rafael Santos / Tom Gerven / Maria Vlad
  • Department of Environmental Engineering and Metallurgical Technological Systems, ”Dunarea de Jos” University of Galati, Galaţi, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-12-11 | DOI: https://doi.org/10.2478/s13531-013-0115-8


Besides producing a substantial portion of anthropogenic CO2 emissions, the industrial sector also generates significant quantities of solid residues. Mineral carbonation of alkaline wastes enables the combination of these two by-products, increasing the sustainability of industrial activities. On top of sequestering CO2 in geochemically stable form, mineral carbonation of waste materials also brings benefits such as stabilization of leaching, basicity and structural integrity, enabling further valorization of the residues, either via reduced waste treatment or landfilling costs, or via the production of marketable products. This paper reviews the current state-of-the-art of this technology and the latest developments in this field. Focus is given to the beneficial effects of mineral carbonation when applied to metallurgical slags, incineration ashes, mining tailings, asbestos containing materials, red mud, and oil shale processing residues. Efforts to intensify the carbonation reaction rate and improve the mineral conversion via process intensification routes, such as the application of ultrasound, hot-stage processing and integrated reactor technologies, are described. Valorization opportunities closest to making the transition from laboratory research to commercial reality, particularly in the form of shaped construction materials and precipitated calcium carbonate, are highlighted. Lastly, the context of mineral carbonation among the range of CCS options is discussed.

Keywords: Industrial alkaline wastes; Mineral carbonation; Accelerated carbonation; Carbon dioxide; Sequestration; Valorization; Stabilization; Process intensification

  • [1] NOAA ESRL, Trends in Atmospheric Carbon Dioxide [Online], Available at: http://www.esrl.noaa.gov/gmd/ccgg/trends/history.html [accessed March 4, 2013] Google Scholar

  • [2] Lackner K. S., Capture of carbon dioxide from ambient air, Eur. Phys. J. Special Topics, 2009, 176, 93–106 Google Scholar

  • [3] House K. Z., Baclig A. C., Ranjan M., van Nierop E. A. et al., Economic and energetic analysis of capturing CO2 from ambient air, PNAS, 2011, 108(51), 20428–20433 Google Scholar

  • [4] Lackner K. S., Brennan S., Matter J. M., Park A. — H. A. et al., The urgency of the development of CO2 capture from ambient air, PNAS, 2012, 109(33), 13156–13162 Google Scholar

  • [5] Goeppert A., Czaun M., Prakash G. K. S., Olah G. A., Air as the renewable carbon source of the future: an overview of CO2 capture from the atmosphere, Energy Environ. Sci., 2012, 5(7), 7833–7853 CrossrefGoogle Scholar

  • [6] Bennaceur K., Monea M., Sakurai S., Gupta N. et al., CO2 Capture and storage — A solution within, Oilfield Review, 2004, 16, 44–61 Google Scholar

  • [7] Lackner K. S., A Guide to CO2 Sequestration, Science, 2003, 300(5626), 1677–1678 Google Scholar

  • [8] Harvey O. R., Cantrell K. J., Qafoku N. P., Brown C. F., Geochemical Implications of CO2 Leakage Associated with Geologic Storage: A Review, Report prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830, 2012 Google Scholar

  • [9] Paulley A., Maul P., Metcalfe R., Scenarios for Potential Impacts from Hypothetical Leakage from Geological Storage Facilities for Carbon Dioxide, Public deliverable from the RISCS project, 2012 Google Scholar

  • [10] Sipilä J., Teir S., Zevenhoven R., Carbon dioxide sequestration by mineral carbonation — Literature review update 2005-2007, ISBN 978-952-12-2036-4, 2008 Google Scholar

  • [11] Seifritz W., CO2 disposal by means of silicates, Nature, 1990, 345(6275), 486 Google Scholar

  • [12] Santos R. M., Van Gerven T., Process intensification routes for mineral carbonation, Greenhouse Gas Sci. Technol., 2011, 1(4), 287–293 Google Scholar

  • [13] Santos R. M., Verbeeck W., Knops P., Rijnsburger K. et al., Integrated mineral carbonation reactor technology for sustainable carbon dioxide sequestration: ‘CO2 Energy Reactor’, Energy Procedia, 2013a, doi:10.1016/j.egypro.2013.06.513 CrossrefGoogle Scholar

  • [14] Van Gerven T., Leaching of Heavy Metals from Carbonated Waste-Containing Construction Material, PhD Thesis, Katholieke Universiteit Leuven, Leuven, Belgium, 2005 Google Scholar

  • [15] Huijgen W. J. J., Carbon dioxide sequestration by mineral carbonation, PhD Thesis, Technische Universiteit Delft, Delft, The Netherlands, 2007 Google Scholar

  • [16] Rawlins C. H., Geological Sequestration of Carbon Dioxide by Hydrous Carbonate Formation in Steelmaking Slag, PhD Thesis, Missouri University of Science and Technology, Rolla, Missouri, USA, 2008 Google Scholar

  • [17] Teir S., Fixation of carbon dioxide by producing carbonates from minerals and steelmaking slags, PhD Thesis, Helsinki University of Technology, Espoo, Finland, 2008 Google Scholar

  • [18] Uibu M., Abatement of CO2 emissions in Estonian oil shale-based power production, PhD Thesis, Tallinn University of Technology, Tallinn, Estonia, 2008 Google Scholar

  • [19] Costa G., Accelerated carbonation of minerals and industrial residues for carbon dioxide storage, PhD Thesis, Universitá Degli Studi Di Roma “Tor Vergata”, Rome, Italy, 2009. Google Scholar

  • [20] Eloneva S., Reduction of CO2 emissions by mineral carbonation: steelmaking slags as raw material with a pure calcium carbonate end product, PhD Thesis, Aalto University, Espoo, Finland, 2010 Google Scholar

  • [21] Gunning P. J., Accelerated Carbonation of Hazardous Wastes, PhD Thesis, University of Greenwich, Chatham Maritime, United Kingdom, 2011 Google Scholar

  • [22] ACEME’10, Third International Conference on Accelerated Carbonation for Environmental and Materials Engineering [Online], Available at: http://web.abo.fi/fak/tkf/vt/aceme10/ [accessed March 4, 2013] Google Scholar

  • [23] ACEME’13, Fourth International Conference on Accelerated Carbonation for Environmental and Materials Engineering [Online], Available at: http://cit.kuleuven.be/aceme13/ [accessed March 4, 2013] Google Scholar

  • [24] Bobicki E. R., Liu Q., Xu Z., Zeng H., Carbon capture and storage using alkaline industrial wastes, Prog. Energy Combust. Sci., 2012, 38, 302–320 CrossrefGoogle Scholar

  • [25] Baciocchi R., Costa G., Bartolomeo E., Polettini A. et al., Carbonation of Stainless Steel Slag as a Process for CO2 Storage and Slag Valorization, Waste Biomass Valorization, 2010a, 1, 467–477 Google Scholar

  • [26] Santos R. M., François D., Mertens G., Elsen J. et al., Ultrasound intensified mineral carbonation, Appl. Therm. Eng., 2013b, 57, 154–163 CrossrefGoogle Scholar

  • [27] Bodor M., Santos R. M., Kriskova L., Elsen J. et al., Susceptibility of mineral phases of steel slags towards mineral carbonation: mineralogical, morphological and chemical assessment, Eur. J Mineral., 2013, doi:10.1127/0935-1221/2013/0025-2300 CrossrefGoogle Scholar

  • [28] IPCC, Carbon Dioxide Capture and Storage — Summary for Policymakers, ISBN 92-9169-119-4, 2005 Google Scholar

  • [29] Huijgen W. J. J., Comans R. N. J., Witkamp G. -J., Cost evaluation of CO2 sequestration by aqueous mineral carbonation, Energy Convers Manage., 2007, 48, 1923–1935 CrossrefGoogle Scholar

  • [30] Chang E. -E., Chen C. -H., Chen Y. -H., Pan S. — Y. et al., Performance evaluation for carbonation of steel-making slags in a slurry reactor, J. Hazard Mater., 2011, 186, 558–564 Google Scholar

  • [31] Chang E. -E., Chiu A. -C., Pan S. -Y., Chen Y. — H. et al., Carbonation of basic oxigen furnace slag with metalworking wastewater in a slurry reactor, Int. J. Greenhouse Gas Control, 2013, 12, 382–389 Google Scholar

  • [32] Gogate P. R., Sutkar V. S., Pandit A. B., Sonochemical reactors: important design and scale up considerations with a special emphasis on heterogeneous systems, Chem. Eng. J., 2011, 166, 1066–1082 Google Scholar

  • [33] Wagterveld R. M., Boels L., Mayer M. J., Witkamp G. J., Visualization of acoustic cavitation effects on suspended calcite crystals, Ultrason. Sonochem., 2011, 18, 216–225 CrossrefGoogle Scholar

  • [34] Steinour H. H., Some effects of carbon dioxide on mortars and concrete-discussion, Concrete Briefs, J. Am. Concr. Inst., 1959, 55, 905–907 Google Scholar

  • [35] Doucet F. J., Effective CO2-specific sequestration capacity of steel slags and variability in their leaching behaviour in view of industrial mineral carbonation, Miner. Eng., 2010, 23, 262–269 CrossrefGoogle Scholar

  • [36] Reddy E. P., Smirniotis, P.G., High-temperature sorbents for CO2 made of alkali metals doped on CaO supports, J. Phys. Chem. B, 2004, 108, 7794–7800 CrossrefGoogle Scholar

  • [37] Blamey J., Anthony E. J., Wang J., Fennell P. S., The calcium looping cycle for large-scale CO2 capture, Prog. Energy Combust. Sci., 2010, 36, 260–279 CrossrefGoogle Scholar

  • [38] Manovic V., Anthony E. J., Lime-based sorbents for high-temperature CO2 capture-a review of sorbent modification methods, Int. J. Environ. Res. Public Health, 2010, 7, 3129–3140 CrossrefGoogle Scholar

  • [39] Prigiobbe V., Polettini A., Baciocchi R., Gassolid carbonation kinetics of Air Pollution Control residues for CO2 storage, Chem. Eng. J., 2009, 148, 270–278. Google Scholar

  • [40] Santos R. M., Ling D., Sarvaramini A., Guo M., Elsen J., Larachi F., Beaudoin G., Blanpain B., Van Gerven T., Stabilization of basic oxygen furnace slag by hot-stage carbonation treatment, Chem. Eng. J., 2012, 203, 239–250 Google Scholar

  • [41] Bonfils B., Julcour-Lebigue C., Guyot F., Bodénan F., Chiquet P., Bourgeois F., Comprehensive analysis of direct aqueous mineral carbonation using dissolution enhancing organic additives, Int. J. Greenhouse Gas Control, 2012, 9, 334–346. Google Scholar

  • [42] Chiang Y. W., Santos R. M., Elsen J., Meesschaert B., Martens J. A., Van Gerven T., Two-way valorization of blast furnace slag into precipitated calcium carbonate and sorbent materials, In: Proceedings of the Fourth International Conference on Accelerated Carbonation for Environmental and Materials Engineering (April 9–12, 2013 Leuven Belgium), 2013, 355–365 Google Scholar

  • [43] Eloneva S., Teir S., Salminen J., Fogelholm C. — J., Zevenhoven R., Steel Converter Slag as a Raw Material for Precipitation of Pure Calcium Carbonate, Ind. Eng. Chem. Res., 2008, 47, 7104–7111 CrossrefGoogle Scholar

  • [44] Eloneva S., Teir S., Revitzer H., Salminen J., Said A., Fogelholm C. -J., Zevenhoven, R., Reduction of CO2 Emissions from Steel Plants by Using Steelmaking Slags for Production of Marketable Calcium Carbonate, Steel Res. Int., 2009, 80(6), 415–421 Google Scholar

  • [45] Eloneva S., Mannisto P., Said A., Fogelholm C. -J., Zevenhoven R., Ammonium salt-based steelmaking slag carbonation: Precipitation of CaCO3 and ammonia losses assessment, Greenhouse Gas Sci. Technol., 2011, 1(4), 305–311 Google Scholar

  • [46] Huijgen W. J. J., Comans R. N. J., Carbonation of Steel Slag for CO2 Sequestration: Leaching of Products and Reaction Mechanisms, Environ Sci Technol., 2006, 40, 2790–2796 CrossrefGoogle Scholar

  • [47] Topkaya Y., Sevinç N., Günaydın A., Slag treatment at Kardemir integrated iron and steel works, Int. J. Miner. Process., 2004, 74, 31–39 CrossrefGoogle Scholar

  • [48] Dippenaar R., Industrial uses of slag (the use and re-use of iron and steelmaking slags), Ironmak Steelmak., 2005, 32, 35–46 CrossrefGoogle Scholar

  • [49] Wang G., Wang Y., Gao Z., Use of steel slag as a granular material: volume expansion prediction and usability criteria, J. Hazard Mater., 2010, 184, 555–560 Google Scholar

  • [50] Emery J. J., Slag utilization in pavement construction, Extending Aggr. Resour., Astm. Spec. Tech. Publ., 1982, 774, 95–118 Google Scholar

  • [51] Mikhail S. A., Turcotte A. M., Thermal behaviour of basic oxygen furnace waste slag, Thermochim. Acta, 1995, 263, 87–94 Google Scholar

  • [52] Waligora J., Bulteel D., Degrugilliers P., Damidot D. et al., Chemical and mineralogical characterizations of LD converter steel slags: A multi-analytical techniques approach, Mater. Charact., 2010, 61, 39–48 CrossrefGoogle Scholar

  • [53] Huijgen W. J. J., Witkamp G. -J., Comans R. N. J., Mineral CO2 Sequestration by Steel Slag Carbonation, Environ. Sci. Technol., 2005, 39, 9676–9682 CrossrefGoogle Scholar

  • [54] Chang E. -E., Pan S. -Y., Chen Y. -H., Tan C. — S. et al., Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed, J. Hazard Mater., 2012, 227–228, 97–106 Google Scholar

  • [55] van Zomeren A., van der Laan S. R., Kobesen H. B. A., Huijgen W. J. J., et al., Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure, Waste Manage., 2011, 31, 2236–2244 CrossrefGoogle Scholar

  • [56] Isoo T., Takahashi T., Fukuhara M., Using carbonated steelmaking slag blocks to help reduce CO2, Am. Ceram. Soc. Bull., 2001, 80, 73–75 Google Scholar

  • [57] Yu J., Wang K., Study on characteristics of steel slag for CO2 capture, Energy Fuels, 2011, 25, 5483–5492 CrossrefGoogle Scholar

  • [58] Saikia N., Cornelis G., Mertens G., Elsen J. et al., Assessment of Pb-slag, MSWI bottom ash and boiler and fly ash for using as a fine aggregate in cement mortar, J. Hazard Mater., 2008, 154, 766–777 Google Scholar

  • [59] Baciocchi, R., Costa, G., Di Bartolomeo, E., Polettini, A. et al., Wet versus slurry carbonation of EAF steel slag, Greenhouse Gas Sci. Technol., 2011, 1, 312–319 Google Scholar

  • [60] Huaiwei H., Xin H., An overview for the utilization of wastes from stainless steel industries, Resour. Conserv. Recycl., 2011, 55, 745–754 CrossrefGoogle Scholar

  • [61] Durinck D., Engström F., Arnout S., Heulens J. et al., Hot stage processing of metallurgical slags, Resour Conserv Recycl. 2008, 52, 1121–1131 CrossrefGoogle Scholar

  • [62] Domínguez M. I., Romero-Sarria F., Centeno M. A., Odriozola J. A., Physicochemical Characterization and Use of Wastes from Stainless Steel Mill, Environ Prog Sustainable Energy 2010, 29, 471–480 CrossrefGoogle Scholar

  • [63] Mayes W. M., Younger P. L., Aumônier J., Hydrogeochemistry of Alkaline Steel Slag Leachates in the UK, Water Air Soil Pollut., 2008, 195, 35–50 Google Scholar

  • [64] Pontikes Y., Jones P. T., Geysen D., Blanpain B., Options to prevent dicalcium silicate-driven disintegration of stainless steel slags, Arch. Metall. Mater. 2010, 55, 1167–1172 Google Scholar

  • [65] Vandevelde E., Mineral carbonation of stainless steel slag, Master’s Thesis, KU Leuven, Leuven, Belgium, 2010 Google Scholar

  • [66] Santos R. M., Ling D., Guo M., Blanpain B., Van Gerven T., Valorisation of thermal residues by intensified mineral carbonation, In: Proceedings of the 50th Conference of Metallurgists and the 6th International Symposium on Waste Recycling in Mineral and Metallurgical Industries (2–5 October 2011 Montreal Canada), 2011, art.nr. 47189 Google Scholar

  • [67] Van Bouwel J., Intensified aqueous mineral carbonation of alkaline industrial residues for CO2 storage and waste remediation: effect of process parameters on carbonation conversion, leaching behavior and mineralogy, Master’s Thesis, KU Leuven, Leuven, Belgium, 2012 Google Scholar

  • [68] Santos R. M., Van Bouwel J., Vandevelde E., Mertens G. et al., Accelerated mineral carbonation of stainless steel slags for CO2 storage and waste valorization: effect of process parameters on geochemical properties, Int. J. Greenhouse Gas Control 2013c, 17, 32–45 Google Scholar

  • [69] Arickx S., Van Gerven T., Vandecasteele C., Accelerated carbonation for treatment of MSWI bottom ash, J. Hazard Mater., 2006, B137, 235–243 Google Scholar

  • [70] Van Gerven T., Van Keer E., Arickx S., Jaspers M. et al., Carbonation of MSWI-bottom ash to decrease heavy metal leaching, in view of recycling, Waste Manage., 2005, 25, 291–300 CrossrefGoogle Scholar

  • [71] Costa G., Baciocchi R., Polettini A., Pomi R. et al., Current status and perspectives of accelerated carbonation processes on municipal waste combustion residues, Environ. Monit. Assess., 2007, 135, 55–75 Google Scholar

  • [72] Rendek E., Ducom G., Germain P., Influence of organic matter on municipal solid waste incinerator bottom ash carbonation, Chemosphere, 2006a, 64, 1212–1218 CrossrefGoogle Scholar

  • [73] Baciocchi R., Costa G., Lategano E., Marini C. et al., Accelerated carbonation of different size fractions of bottom ash from RDF incineration, Waste Manage., 2010b, 30, 1310–1317 CrossrefGoogle Scholar

  • [74] Rendek E., Ducom G., Germain P., Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash, J. Hazard Mater., 2006b, B128, 73–79 Google Scholar

  • [75] Um N., Nam S. Y., Ahn J. W., Effect of accelerated carbonation on the leaching behavior of Cr in municipal solid waste incinerator bottom ash and the carbonation kinetics, In: Proceedings of the Fourth International Conference on Accelerated Carbonation for Environmental and Materials Engineering (April 9–12, 2013 Leuven Belgium), 2013, 529–533 Google Scholar

  • [76] Santos R. M., Mertens G., Salman M., Cizer Ö. et al., Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching, J. Environ. Manage., 2013d, 128, 807–821 Google Scholar

  • [77] Larachi F., Gravel J. -P., Grandjean B. P. A., Beaudoin G., Role of steam, hydrogen and pretreatment in chrysotile gas-solid carbonation: Opportunities for pre-combustion CO2 capture, Int. J. Greenhouse Gas Control, 2012, 6, 69–76 Google Scholar

  • [78] Assima G. P., Larachi F., Molson J., Beaudoin G., Assessment of the impact of seasonal temperature variations on the dynamics of CO2 mineral sequestration by nickel mining residues, In: Proceedings of the Fourth International Conference on Accelerated Carbonation for Environmental and Materials Engineering (April 9–12, 2013 Leuven Belgium), 2013, 245–254 Google Scholar

  • [79] Gerdemann S. J., O’Connor W. K., Dahlin D. C., Penner L. R. et al., Ex Situ Aqueous Mineral Carbonation, Environ Sci Technol., 2007, 41, 2587–2593 CrossrefGoogle Scholar

  • [80] Gualtieri A. F., Cavenati C., Zanatto I., Meloni M. et al., The transformation sequence of cement-asbestos slates up to 1200°C and safe recycling of the reaction product in stoneware tile mixtures, J. Hazard Mater., 2008, 152, 563–570 Google Scholar

  • [81] Gualtieri A. F., Boccaletti M., Recycling of the product of thermal inertization of cement-asbestos for the production of concrete, Constr. Build Mater., 2011, 25, 3561–3569 CrossrefGoogle Scholar

  • [82] Larachi F., Daldoul I., Beaudoin G., Fixation of CO2 by chrysotile in low-pressure dry and moist carbonation: Ex-situ and in-situ characterizations, Geochim. Cosmochim. Acta, 2010, 74, 3051–3075 CrossrefGoogle Scholar

  • [83] Ryu K. W., Chae S. C., Jang Y. N., Carbonation of chrysotile under subcritical conditions, Mater Trans., 2011a, 52(10), 1983–1988 CrossrefGoogle Scholar

  • [84] Ryu K. W., Lee M. G., Jang Y. N., Mechanism of tremolite carbonation, Appl. Geochem., 2011b, 26, 1215–1221 CrossrefGoogle Scholar

  • [85] Gadikota G., Natali C., Boschi C., Park A. — H. A., Carbonation of Asbestos for Permanent Storage of Anthropogenic CO2, In: Proceedings of the Fourth International Conference on Accelerated Carbonation for Environmental and Materials Engineering (April 9–12, 2013 Leuven Belgium), 2013, 255–264 Google Scholar

  • [86] Meyer N. A., Vogeli J., Becker M., Broadhurst J. L, et al., Mineral carbonation of PGM mine tailings for CO2 storage in South Africa: A case study from Lonmin, In: Proceedings of the Fourth International Conference on Accelerated Carbonation for Environmental and Materials Engineering (April 9–12, 2013 Leuven Belgium), 2013, 503–507 Google Scholar

  • [87] Gräfe M. Power G., Klauber C., Review of bauxite residue alkalinity and associated chemistry, CSIRO Document DMR-3610, May 2009 Google Scholar

  • [88] Si C., Ma Y., Lin C., Red mud as a carbon sink: Variability, affecting factors and environmental significance, J. Hazard Mater., 2013, 244–245, 54–59 Google Scholar

  • [89] Santini T. C., Hinz C., Rate A. W., Carter C. M. et al., In situ neutralization of uncarbonated bauxite residue mud by cross layer leaching with carbonated bauxite residue mud, J. Hazard Mater, 2011, 194, 119–127 Google Scholar

  • [90] Bonenfant D., Kharoune L., Sauvé S., Hausler R. et al., CO2 Sequestration by Aqueous Red Mud Carbonation at Ambient Pressure and Temperature, Ind. Eng. Chem. Res., 2008, 47, 7617–7622 CrossrefGoogle Scholar

  • [91] Yadav V. S., Prasad M., Khan J., Amritphale S. S. et al., Sequestration of carbon dioxide (CO2) using red mud, J. Hazard Mater., 2010, 176, 1044–1050 Google Scholar

  • [92] Sahu R. C., Patel R. K., Ray B. C., Neutralization of red mud using CO2 sequestration cycle, J. Hazard Mater., 2010, 179, 28–34 Google Scholar

  • [93] Khaitan S., Dzombak D. A., Lowry G. V., Mechanisms of Neutralization of Bauxite Residue by Carbon Dioxide, J. Environ. Eng., 2009, 135, 433–438 Google Scholar

  • [94] Dilmore R., Lu P., Allen D., Soong Y. et al., Sequestration of CO2 in Mixtures of Bauxite Residue and Saline Wastewater, Energy Fuels, 2008, 22, 343–353 CrossrefGoogle Scholar

  • [95] Soong Y., Dilmore R. M., Hedges S. W., Howard B. H. et al., Utilization of Multiple Waste Streams for Acid Gas Sequestration and Multi-Pollutant Control, Chem Eng Technol., 2012, 35(3), 473–481 CrossrefGoogle Scholar

  • [96] Uibu M., Uus M., Kuusik R., CO2 mineral sequestration in oil-shale wastes from Estonian power production, J. Environ. Manage., 2009, 90, 1253–1260 Google Scholar

  • [97] Uibu M., Kuusik R., Mineral trapping of CO2 via oil shale ash aqueous carbonation: controlling mechanism of process rate and development of continuous-flow reactor system, Oil Shale, 2009, 26(1), 40–58 Google Scholar

  • [98] Uibu M., Velts O., Kuusik R., Developments in CO2 mineral carbonation of oil shale ash, J. Hazard Mater., 2010, 174, 209–214 Google Scholar

  • [99] Monkman S., Shao Y., Shi C., Carbonated Ladle Slag Fines for Carbon Uptake and Sand Substitute, J. Mater Civ Eng., 2009, 21(11), 657–665 CrossrefGoogle Scholar

  • [100] Salman M., Cizer Ö., Pontikes Y., Vandewalle L. et al., Carbonation potential of continuous casting stainless steel slag, In: Proceedings of the Fourth International Conference on Accelerated Carbonation for Environmental and Materials Engineering (April–12, 2013 Leuven Belgium), 2013, 317–327 Google Scholar

  • [101] Van Mechelen D., Quaghebeur M., Evlard J., Nielsen P. et al., Development of a pilot plant for mineral carbonation of waste materials, In: Proceedings of the Fourth International Conference on Accelerated Carbonation for Environmental and Materials Engineering (April 9–12, 2013 Leuven Belgium), 2013, 509–511 Google Scholar

  • [102] Baciocchi R., Costa G., Morone M., Polettini A. et al., Valorization of steel slag by a combined carbonation and granulation treatment, In: Proceedings of the Fourth International Conference on Accelerated Carbonation for Environmental and Materials Engineering (April 9–12, 2013 Leuven Belgium), 2013, 329–338 Google Scholar

  • [103] Gunning P., Hills C. D., Carey P. J., Commercial Application of Accelerated Carbonation: Looking Back at the First Year, In: Proceedings of the Fourth International Conference on Accelerated Carbonation for Environmental and Materials Engineering (April 9–12, 2013 Leuven Belgium), 2013, 185–192 Google Scholar

  • [104] Hills C. D., Carey P. J., Production of secondary aggregates, US Patent Application, 2009/0104349 A1, 2009 Google Scholar

  • [105] Gunning P. J., Hills C. D., Carey P. J., Production of lightweight aggregate from industrial waste and carbon dioxide, Waste Manage., 2009, 29, 2722–2728 CrossrefGoogle Scholar

  • [106] Maroto-Valer M. M., Mineral carbonation: Developing decentralised CCS technologies, Keynote at Fourth International Conference on Accelerated Carbonation for Environmental and Materials Engineering (April 9–12, 2013 Leuven Belgium), 2013 Google Scholar

About the article

Published Online: 2013-12-11

Published in Print: 2013-12-01

Citation Information: Open Engineering, Volume 3, Issue 4, Pages 566–584, ISSN (Online) 2391-5439, DOI: https://doi.org/10.2478/s13531-013-0115-8.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Ning Zhang, Rafael M. Santos, Stephen M. Smith, and Lidija Šiller
Chemical Engineering Journal, 2018
Tryfonas Pieri, Alexandros Nikitas, Arturo Castillo-Castillo, and Athanasios Angelis-Dimakis
Environments, 2018, Volume 5, Number 10, Page 108
Shu-Yuan Pan, Rahul Adhikari, Yi-Hung Chen, Ping Li, and Pen-Chi Chiang
Journal of Cleaner Production, 2016, Volume 137, Page 617
Rafael Santos, Aldo Van Audenaerde, Yi Chiang, Remus Iacobescu, Pol Knops, and Tom Van Gerven
Metals, 2015, Volume 5, Number 3, Page 1620
Monika Kasina, Piotr R. Kowalski, and Marek Michalik
Mineralogia, 2015, Volume 45, Number 1-2
Marius Bodor, Rafael M. Santos, Yi Wai Chiang, Maria Vlad, and Tom Van Gerven
The Scientific World Journal, 2014, Volume 2014, Page 1
Rafael M. Santos, Marius Bodor, Paul N. Dragomir, Andreea G. Vraciu, Maria Vlad, and Tom Van Gerven
Minerals Engineering, 2014, Volume 59, Page 71

Comments (0)

Please log in or register to comment.
Log in